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Abstract

Objective: The effect of Small Vessel Disease (SVD) on the size of the hippocampus and amygdala remains uncertain. 
We carried out an MRI volumetry study to investigate the association between the volume of White Matter Lesions (WMLs) 
and the size of the hippocampus and amygdala.

Methods:  One hundred patients with ischemic stroke were recruited in this study, with their MRIs analyzed using 
automatic volumetry. The volumes of the hippocampus, amygdala, Cortical Gray Matter (CGM), and WMLs were measured 
and standardized with intracranial volume. The subjects were divided into two groups stratified by smaller and larger hip-
pocampus, amygdala, and CGM volumes (with the median as the cut-off), respectively. The demographic, clinical, and imag-
ing variables of the two groups were compared in term of smaller and larger volumes in these three regions.

Results: Multivariate logistic regression showed that WML volume (odds ratio [OR] = 1.869, p=0.004) and sex (male, 
OR=5.714, p=0.004) were significant predictors of a smaller hippocampus. Age (OR=1.062, p=0.033) was the only significant 
predictor of a smaller amygdala. Age and sex were predictive of a smaller CGM volume. 

Conclusions: The hippocampus may be vulnerable to SVD in patients with ischemic stroke, suggesting that hip-
pocampal atrophy may result from a mixture of ischemic and degenerative pathologies. Whether SVD plays a role in atrophy 
of the amygdala remains uncertain. 

©2013 The Authors. Published by the JScholar under the terms of the Crea-
tive Commons Attribution License http://creativecommons.org/licenses/
by/3.0/, which permits unrestricted use, provided the original author and 
source are credited.
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Brain atrophy is common in patients with ischemic stroke, 
and may arise from both aging and ischemic lesions. Corti-
cal Gray Matter (CGM) atrophy has been linked to age, hy-
pertension, and white matter lesions (WMLs)[1]. WMLs are 
generally considered to be features of Small Vessel Disease 
(SVD), although in a previous study we found vulnerability to 

SVD to differ in the frontal, parietal, and temporal lobes[2]. 
In subjects with SVD, the common presence of memory im-
pairment (although less prominent than executive dysfunc-
tion) and behavioral symptoms suggests that the structures 
involved in the limbic system may be affected by SVD. 

The hippocampus is a limbic system structure that is essential 
for learning and declarative memory. Hippocampal atrophy 
is generally considered to be an early feature of Alzheimer’s 
Disease (AD)[3], and hippocampal size has been shown to 
be a predictor of dementia in individuals with mild cogni-
tive impairment[4]. Hippocampal atrophy has also been 
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documented in other forms of dementia, including Vascular 
Dementia (VaD)[5], and is predictive of dementia in patients 
with Subcortical Ischemic Vascular Disease (SIVD)[6] and 
poststroke cognitive decline[7,8]. Pathological studies have 
suggested that the hippocampal atrophy seen in VaD is related 
to ischemic pathology rather than AD pathology[9,10].  How-
ever, a study comparing the hippocampal volume of a group 
of stroke or Transient Ischemic Attack (TIA) subjects with 
or without dementia and that of a group of healthy controls 
found no significant difference between them[11].

The amygdala, also part of the limbic system, is a central struc-
ture in the control of emotion and affective behavior. It also 
plays a role in learning and memory through the influence 
of emotional valence on memory[12]. Neuroimaging studies 
have confirmed the amygdala’s role in anxiety disorders, par-
ticularly posttraumatic stress disorder and social anxiety dis-
order[13], and in major depressive disorders[14]. In addition, 
significant amygdala atrophy has been detected on the MRIs 
of patients with early AD[15,16]. However, the amygdala has 
rarely been studied in stroke subjects, although Sachdev[17] 
found it to be smaller in stroke or TIA patients, particularly 
those with cognitive impairment. Both hypertension and atrial 
fibrillation were found to be significant predictors of amygdala 
volume[17].

The effect of SVD on the hippocampus and amygdala remains 
uncertain. As SVD is prevalent in stroke patients and the com-
munity-dwelling elderly[18], examination of its role in these 
two critical structures is of considerable importance. The aim 
of the MRI volumetric study reported herein was to compare 
the effect of SVD on hippocampus and amygdala volumes, with 
CGM as a reference. We hypothesized that the three structures 
would exhibit different degrees of vulnerability to SVD.

Methods
Three hundred and thirty-seven patients with acute ischemic 
stroke were admitted to the Acute Stroke Unit (ASU) of the 
Prince of Wales Hospital in Hong Kong and underwent MRI 
examination between June 2006 and June 2007. Among them, 
147 patients were recruited for a poststroke psychiatric inter-
view three months after the index stroke. Patients attended the 
post stroke psychiatric interview if they were: (1) 18 years or 
older, (2) had an acute first or recurrent ischemic stroke, (3) 
scored 15 or higher on the Cantonese version of the Mini-Men-
tal State Examination (MMSE) on admission, and (4) were of 
Chinese descent and fluent in the Cantonese dialect. Patients 
were excluded if they (1) had a central nervous system disease 
other than stroke, or (2) significant aphasia or dysarthria. Of 
the 147 subjects who attended interviews, we excluded 34 with 
large vessel infarctions and 10 with cardioembolic infarctions, 
and three additional subjects were excluded because their MRI 
quality was too poor for volumetry. The MRIs of 100 patients 
were thus analyzed using volumetry. Their recruitment was 
approved by the Clinical Research Ethics Committee of the 
Chinese University of Hong Kong, and all participants signed 
a consent form.

Basic socio-demographic and clinical data, including age, sex, 
education (years), hypertension, diabetes mellitus, previous 

stroke, ischemic heart disease, and smoking history, and Na-
tional Institutes of Health Stroke Scale (NIHSS) score at ad-
mission, were retrieved from the Stroke Registry at the ASU. 
Hypertension was defined as repeated blood pressure meas-
ures of ≥140/90mm Hg or the need for chronic antihyperten-
sive medication; diabetes mellitus was defined as fasting blood 
glucose ≥7.0mmol/l, postprandial blood glucose ≥11.1mmol/l, 
or current treatment for the disease. The Cantonese version 
of the MMSE[19] and Geriatric Depression Scale (GDS) [20] 
were administered by a research assistant at three months post 
stroke.  

MRI measurements
MRI assessment was performed on each subject in a 1.5T 
MR scanner (Sonata, Siemens Medical, Erlangen, Germany) 
within seven days of the index stroke. DWI spin echo EPI 
(TR/TE/excitation=180/122/4, matrix=128×128, FOV=230 
mm, slice thickness/gap=5 mm/1 mm, EPI factor=90, acqui-
sition time=55 s) with three orthogonally applied gradients 
were used with b values of 1000 and 500. Axial gradient echo 
images were acquired as the second sequence with imaging 
parameters of TR/TE/excitation=350/30/2, flip angle=30 u, 
slice thickness/gap=5 mm/0.5 mm, FOV=230 mm, matrix 
256×256 and acquisition time=5 min 4 s. Axial SE T1 (TR/
TE/excitation=425/14/2, FOV=230 mm, slice thickness/gap=5 
mm/0.5mm, matrix=256×256, acquisition time=4 min 28 s) 
and TSE T2 (TR/TE/excitation=2500/120/1, turbo factor 
=15, FOV=230mm, slice thickness/gap=5mm/0.5mm, matrix 
=256×256, acquisition time=1 min 39 s) images were also ac-
quired. Finally, whole-brain volume was also measured using 
a T1-weighted FLASH sequence.

Brain infarcts and cerebral microbleeds
The measurement of brain infarcts and cerebral microbleeds 
(CMBs) was conducted by a neurologist (YKC) experienced in 
neuroimaging. Old infarctions of the brain were identified on 
the T1-weighted images and confirmed on the corresponding 
T2-weighted images, with the volumetric measurements car-
ried out on the former. The area of old infarcts in each visible 
slice was measured with manual outlines, and the total volume 
was calculated by multiplying the total area by the sum of the 
slice thickness and gap. The number of old infarcts was also 
recorded. New infarctions were not assessed, as they did not 
affect the correlation between SVD and brain atrophy, abnor-
malities that existed before the index stroke. Inter- and intra-
rater agreement was good in the infarct measurement (volume 
of infarcts: inter-rater intra-class correlation coefficient [ICC] 
=0.86; intra-rater ICC=0.95; number of infarcts: inter-rater 
ICC=0.93; intra-rater ICC= 0.96).

CMBs were defined as small (2-10 mm) hypointense lesions 
on the T2-weighted gradient echo sequence, with symmetric 
basal ganglia calcification and flow void artifacts of the pial 
blood vessels excluded[21]. The presence and number of 
CMBs were recorded. Inter- and intra-rater agreement was 
good (presence of CMBs: inter-rater kappa=0.78; intra-rater 
kappa=0.85; number of CMBs: inter-rater ICC =0.91; intra-
rater ICC=0.95).
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Volumetry of brain regions and WMLs
Volumetry analysis of subjects’ brain regions was performed 
by two radiological engineers (DW and LSH) using an auto-
matic image analysis program, the Insight Segmentation and 
Registration Toolkit (http://www.itk.org). Tissue classification 
was performed using the supervised k-nearest neighbors’ clas-
sifier to classify the entire 3-D image. The initial classification 
was defined by a set of samples generated from prior tissue 
probability maps in the standard brain space. After sufficient 
quality control, the volumes of white matter (WM), gray 
matter (GM), and cerebrospinal fluid (CSF) were calculated 
as the number of voxels multiplied by the size of each voxel. 
WMLs were defined as high intensities observed on the T2-
weighted MRI images and FLAIR images within the cerebral 
WM (including the periventricular and subcortical regions). 
A fully automated clustering-based quantitative WML detec-
tion technique was adopted to analyze the FLAIR intensities 
on the WM mask, which was generated from the segmenta-
tion result of T1 images co-aligned with FLAIR data [22]. 
The regional brain volume was evaluated specifically for the 
hippocampus and amygdala, and the Talairach atlas was con-
structed by manually delineating the deep brain structures and 
intracranial region of a single subject. These brain structure 
labels were then transformed into input data non-rigidly (us-
ing demon registration)[23]. This technique allowed the hip-
pocampus and amygdala to be segmented, and their volumes 
quantified. The intracranial volume (ICV) was also calculated 
using this approach. Finally, the volumes of all three brain re-
gions, GM, and WMLs were standardized by ICV (=1000×raw 
volume/ICV). 

Statistical analysis
The subjects were divided into two groups stratified by a small-
er and larger hippocampus volume, defined as a volume at or 
below the median and above the median, respectively. The pro-
portional differences between the two groups were analyzed 
with the χ2 test. Continuous data were compared with t-tests 
(normally distributed) or Mann-Whitney U tests (distorted), 
as appropriate. Variables with a p value <0.1 were then entered 
into a multivariate logistic regression to identify the significant 
correlates of smaller hippocampal volume. The same analysis 
was performed for amygdala and CGM. The level of signifi-
cance in the logistic regressions was set at p<0.05 (two-tailed). 
Finally, the Pearson’s correlations between WML volume (log-
transformed) and hippocampus, amygdala, and CGM volume 
were calculated. All statistical analyses were performed using 
SPSS Version 16.0 (SPSS, Chicago, USA). 

Results
One hundred patients with ischemic stroke were evaluated in 
this study. The patients excluded from the study (237 cases) 
were older (73.9(12.1) vs. 69.0(8.7) years, p<0.001), more like-
ly to be female (52.4% vs. 38.0%; p=0.016), and had a higher 
NIHSS score (10.2(9.5) vs. 4.5(3.1), p < 0.001). Eleven (11.0%) 
of the 100 patients included in the study had a history of prior 
stroke, and none had an infarct larger than 15 mm in diameter. 
The mean (s.d.) ICV and CGM volume were 1446.82 (173.62) 
and 574.12 (75.31)cm3, respectively, with a CGM/ICV ratio of 

Variables Mean (s.d.)/n(%)
Age 69.0±8.7
Sex(male) 62(62.0%)
Education years 5.1±3.6
Hypertension 71(71.0%)
Diabetes 32(32.0%)
Smoking history 51(51.0%)
Prior stroke 11(11.0%)
NIHSS on admission 4.5±3.1
MMSE 25.8 (3.2)
GDS 4.5 (3.9)
Intracranial volume (cm3) 1446.82 (173.62)
Grey matter volume (cm3) 574.12 (75.31)
Grey matter / intracranial vol-
ume

0.397

Hippocampal volume (cm3)* 7.36 (0.91)
Amygdala volume (cm3)* 2.81 (0.42)
White matter lesions volume 
(cm3)

5.44 (4.22)

NIHSS=the National Institutes of Health Stroke Scale; BI=Barthle index; 
MMSE=Mini-Mental State Examination; GDS= Geriatric Depression Scale.
* The sum of left and right
Table 1:  Demographic and clinical characteristics of the subjects 
(n=100).
0.397. The mean (s.d.) volumes (sum of the left and right sides) 
of the hippocampus and amygdala were 7.36 (0.91) and 2.81 
(0.42)cm3, respectively, and the mean (s.d.) WML volume was 
5.44 (4.22)cm3. The patients’ characteristics are presented in 
Table 1.  

Univariate comparisons between the smaller and larger vol-
ume groups in terms of the hippocampus, amygdala, and 
CGM are presented in Table 2. The subjects with smaller hip-
pocampus, amygdala, and CGM volumes were all significantly 
older and had a larger WML volume (p < 0.01) compared with 
those with larger such volumes. Subjects with smaller hip-
pocampus and CGM volumes were more likely to be male (p 
< 0.05). Those with a smaller CGM volume (p=0.035) also ex-
hibited a larger old infarct volume. 

In the multivariate logistic regression of smaller hippocam-
pal volume, sex (male, odds ratio [OR] = 5.714, 95% confi-
dence interval [C.I.]=1.754-18.519; p=0.04) and WML volume 
(OR= 1.896, 95% C.I.= 1.226-2.849, p=0.004) were significant 
predictors, whereas age was the only significant correlate of 
a smaller amygdala volume (OR=1.062, 95% CI=1.005-1.123; 
p=0.033) (Table 3). WML volume displayed only a predictive 
trend (p=0.070) toward a smaller amygdala, and age and sex 
(male) were significant predictors of a smaller CGM volume. 
Scatter plots of the correlations between WML volume and 
hippocampus, amygdala, and CGM volumes are presented in 
Figure 1.

Discussion
Using MRI volumetry, we found WML volume to be a signifi-
cant predictor of hippocampal size in non-demented stroke 
patients, independent of age, sex, smoking history, and old 
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Hippocampus Amygdala Cortical grey matter
smaller  
n=50

larger n=50 smaller  
n=50

larger 
n=50

smaller  
n=50

larger  
n=50

Clinical variables
age 71.9±9.3‡ 66.1±7.4 71.9±8.6‡ 66.1±8.2 71.5±7.9‡ 66.4±9.1
sex(male) 38(76.0%)‡ 24(48.0%) 34(68.0%) 28(56.0%) 37(74.0%)† 25(50.0%)

education years 5.1±3.5 5.2±3.6 5.1±3.6 5.1±3.5 5.2±3.2 5.0±3.9
hypertension 34(68.0%) 37(74.0%) 33(66.0%) 38(76.0%) 35(70.0%) 36(72.0%)
diabetes mellitus 17(34.0%) 15(30.0%) 14(28.0%) 18(36.0%) 17(34.0%) 15(30.0%)
hyperlipidemia 28(56.0%) 27(54.0%) 25(50.0%) 30(60.0%) 24(48.0%) 31(62.0%)
ischemic heart disease 2(4.0%) 4(8.0%) 2(4.0%) 4(8.0%) 4(8.0%) 2(4.0%)
previous stroke 7(14.0%) 4(8.0%) 7(14.0%) 4(8.0%) 6(12.0%) 5(10.0%)
smoking history 30(60.0%)* 21(42.0%) 28(56.0%) 23(46.0%) 30(60.0%)* 21(42.0%)
MMSE 25.6±3.5 26.0±3.1 25.7±3.2 25.9±3.3 25.9±3.3 25.7±3.2
GDS 4.2±3.9 4.8±3.8 4.3±4.1 4.7±3.6 4.3±3.9 4.6±3.8
Imaging variables
no of old lacunes 0.9±1.6 0.6±1.0 0.8±1.6 0.6±1.0 0.8±1.4 0.6±1.3
no of old infarcts 1.0±1.6 0.7±1.1 1.0±1.6 0.8±1.1 1.0±1.4 0.8±1.3
Std. volume of old infarcts 1.2±3.2* 0.1±0.1 1.0±2.2 0.5±2.4 1.0±3.0† 0.3±1.2
Std. WMLs volume 5.1±3.5‡ 2.4±1.7 4.9±3.6‡ 2.6±1.8 4.0±2.1‡ 3.5±3.8
presence of CMBs 14(28.0%) 12(24.0%) 12(24.0%) 14(28.0%) 16(32.0%) 10(20.0%)
no of CMBs 1.3±2.9 0.9±3.2 1.2±2.9 0.9±3.1 1.3±2.8 0.9±3.2

*P<0.1;  †P<0.05;  ‡P<0.01. MMSE= Mini-mental Status Examination; GDS= Geriatric Depression Scale; Std. WMLs volume = Standardized white matter lesions 
volume; CMBs= cerebral microbleeds.
Table 2:  Clinical and imaging characteristics between smaller and larger volume groups in term of hippocampus, amygadala and cortical grey 
matter.

Variables Smaller hippocampal    Smaller Amygdala Smaller   CGM volume
p OR (95%C.I.) p OR (95%C.I.) p OR (95%C.I.)

Age 0.098 1.06 
(0.989-1.135)

0.033 1.062 
(1.005-1.123)

<0.001 1.123 
(1.055-1.195)

Sex(male) 0.004 5.714 
(1.754-18.519)

-- -- 0.001 6.173 
(2.105-18.182)

Std. WMLs 
volume

0.004 1.869 
(1.226-2.849)

0.07 1.042 
(0.997-1.090)

0.317 0.903 
(0.740-1.103)

Old infarcts 
volume

0.139 2.919 
(0.706-12.074)

-- -- 0.204 1.151 
(0.926-1.431)

Smoking history 0.574 0.701 
(0.220-2.230)

-- -- 0.661 0.795 
(0.285-2.217)

CGM= Cortical grey matter; Std. WMLs volume = Standardized white matter lesions volume; OR=odds ratio.
Table 3: Logistic regression analysis of smaller volumes of the hippocampus, amygdale and cortical grey matter

infarct volume, although it did not predict CGM volume or 
amygdala size. This finding suggests that the hippocampus is 
vulnerable not only to whole brain ischemia, but also to SVD.       
WMLs have been shown to correlate with hippocampal atro-
phy in AD patients [24] and the non-demented elderly [25,26], 
suggesting that indicators of SVD in the brain may be associ-
ated with the atrophy of structures affected by AD pathology. 
In the current study, WMLs predicted a smaller hippocampal 
size in patients with ischemic stroke. Although this finding has 
not previously been reported, it is supported by a study show-
ing patients with SIVD to have a smaller hippocampal volume 

[6], which suggests that hippocampal atrophy may result from 
a mixture of ischemic and degenerative pathologies. The hip-
pocampus depends largely on input from the cortical associa-
tion areas by means of projections running through the WM. 
Interruptions in these connections owing to ischemic WMLs 
may lead to atrophy of the hippocampus through Wallerian 
degeneration[27]. Thus, a mixture of AD and VaD pathologies 
may account for a significant proportion of the dementia seen 
in stroke patients.

We also assessed the relationship between amygdala size and 
WML volume, and found age to be the only predictor of the 
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Figure 1:  Scatter plots of WMLs volume and hippocampus, amyg-
dale and CGM volume

former. Patients with a smaller amygdala had significantly 
more WMLs. After controlling for age, however, the associa-
tion was no longer significant (p=0.07). Sachdev[17] reported 
a similar result, finding WML volume to be significantly as-
sociated with amygdala size (r=0.37, p=0.01), but no longer a 
significant predictor after controlling for age and other con-
founders in multiple linear regression. However, they did not 
find amygdala size to be age-dependent, and we were unable to 
confirm such predictors as hypertension and atrial fibrillation. 
The discrepancy may result from differences in the clinical 

characteristics of the study samples. The relationship between 
WMLs and amygdala size warrants further prospective studies 
with a larger sample size, as the amygdala is massively con-
nected with other brain regions[28], and these connections 
may also be affected by WMLs.

Compared with the hippocampus, CGM appears to be primar-
ily dependent on age and sex. WML volume did not contribute 
to CGM size in this study, which indicates that there may be 
variations in vulnerability to SVD in different regions of the 
brain. It can be speculated that SVD has a selective effect on 
specific cortical regions.

This study suffered a number of limitations. First, its cross-
sectional design prevented us from establishing a causal rela-
tionship between hippocampal size and WML volume. Sec-
ond, the subjects may not be representative of a consecutive 
stroke sample, as they had relatively milder neurologic deficits. 
Third, we did not divide the WMLs into different regions, and 
doing so may have provided more interesting information. 
Finally, we did not take new infarctions into account in volu-
metry analysis of the three brain regions, i.e., the hippocam-
pus, amygdala, and CGM. However, infarctions involving the 
hippocampus and amygdala are uncommon, and no subject 
in our cohort had them in either region. With regard to the 
CGM measurement, we cannot completely exclude the effects 
of post-infarction cerebral edema, which led to a slight CGM 
overestimate. However, as previously noted, we excluded pa-
tients with large vessel infarctions and cardioembolic infarc-
tions, which can affect the volumetry of brain regions using 
automatic image analysis. 

In conclusion, the hippocampus may be a structure vulnerable 
to SVD in patients with ischemic stroke, suggesting that hip-
pocampal atrophy may result from a mixture of ischemic and 
degenerative pathologies. Whether SVD plays a role in atro-
phy of the amygdala remains uncertain. Further prospective 
studies with larger samples are needed to confirm the findings 
reported herein. In addition, diffusion tensor imaging, which 
is able to detect the integrity of the WM tract[29], would be a 
promising technique for investigating the association between 
these two critical structures and SVD.
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