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Abstract

Depression and anxiety like symptoms appeared in mice when they were kept in cages and sequentially subjected to 
leaning, drenching, and rotation within 1-2 days for 3 weeks (chronic mild stress: CMS).  The depression-like symptom was 
evaluated by performing the tail suspension test; and the anxiety-like symptom, by the elevated plus-maze test and light-dark 
box test.  Caffeic Acid Phenethyl Ester (CAPE), a component of propolis, showed a preventive effect against both depres-
sion- and anxiety-like symptoms when administered during the stress loading, and CAPE also displayed a therapeutic effect 
against both symptoms when administered after the stress loading.  Furthermore, CAPE restored the CMS-induced decrease 
in the level of the phosphorylated forms of extracellular signal-regulated protein kinases (ERK) 1/2 and cAMP-response ele-
ment binding protein (CREB) in the hippocampus to a normal level.  These results suggest that CAPE is a promising tool for 
therapy of mood disorders through activation of the hippocampal ERK1/2-CREB signaling cascade. 
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Depression and anxiety frequently coexist [1,2] and are 
sometimes preceded by stressful life events [3, 4].  Despite the 
high occurrence of and significant disability resulting from 
such disorders, the pathophysiology of stress-related mood 
disorders is not fully understood.  Recent investigations 
have demonstrated that impaired function of Brain-Derived 
Neurotrophic Factor (BDNF), a member of the neurotro-
phin family of neurotrophic factors, is positively correlated 
with depression [5] and anxiety-related personality traits 
[6]. BDNF plays roles in the maintenance of neuronal func-
tion and plasticity during development and adulthood [7,8].  
This factor is highly expressed in the hippocampus, and a 
growing body of evidence indicates that hippocampal BDNF 
is involved in the etiology and treatment of stress-related 
mood disorders including depression and anxiety [6,9].  For 

example, exposure to a stressor inhibits neurogenesis in the 
dentate gyrus [10,11] and causes a reduction in hippocam-
pal volume [12,13].  Importantly, such exposure also reduces 
the level of BDNF in the hippocampus [14].  These findings 
imply that a stress-induced reduction in neurotrophic sup-
port causes hippocampal damage [9,15], suggesting that 
substances that mimic intracellular signals of neurotrophins 
including BDNF may be promising candidates for therapy. 

Caffeic Acid Phenethyl Ester (CAPE) is a component of 
propolis, which is a substance taken from the hives of hon-
eybees; and it exhibits many biological activities including 
anti-oxidative, anti-inflammatory, anti-tumor, and anti-viral 
ones [16].  The effects of CAPE have been recently expanded 
to the central nervous system; i.e., the infarct volume and 
degree of neurological deficit induced by artery occlusion 
become smaller in CAPE-administered animals [17-19], and 
CAPE prevents cultured cerebellar granule neurons against 
glutamate-induced neurotoxicity [20].  Also, earlier we found 
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that CAPE enhances the recovery of locomotor function and 
reduces lesion size in the injured spinal cord while suppress-
ing the mRNA expression of pro-inflammatory cytokines and 
inflammatory enzymes [21].  Furthermore, we recently found 
that CAPE increased the level of phosphorylated forms of 
ERK1/2 and cAMP-response element-binding protein (CREB) 
in cultured central neurons (Soga et al., unpublished results), 
suggesting BDNF-like biological activity of CAPE.  From these 
observations, CAPE would be expected to have ameliorative 
activity toward stress-related mood disorders including de-
pression and anxiety, as in the case of BDNF.  

We used a murine model of Chronic Mild Stress (CMS)  in this 
present study, because Willner [22] described that this model 
has good predictive validity (behavioral changes are reversed 
by chronic treatment with a wide variety of antidepressants), 
face validity (almost all demonstrable symptoms of depression 
have been demonstrated), and construct validity (CMS causes 
a generalized decrease in responsiveness to rewards, compara-
ble to anhedonia, the core symptom of the melancholic sub-
type of major depressive disorder).   

In this study, we examined the effects of CAPE on depression-
like and anxiety-like symptoms and the influence of CAPE on 
the signal transduction pathways of BDNF by using a CMS 
animal model. 

Materials and Methods
Animals
Seven-week-old male ddY mice (Japan SLC, Hamamatsu, 
Japan), weighing 35-40 g, were used. The mice were housed 
under conditions of constant temperature (23±20C), humidity 
(55±10 %), and a 12-h light/12-h dark cycle with food and wa-
ter freely available.  All animal experiments were performed 
according to the Guidelines for Care and Use of Laboratory 
Animals of Gifu Pharmaceutical University.

Drug treatment
  CAPE (see Figure 1) was provided by Api Co. Ltd. (Gifu, 
Japan). Fluvoxamine was also used as a currently prescribed 
antidepressant to check the validity or availability of the ex-
perimental systems used in this study including CMS-loading 
systems or behavioral tests.  The drugs were dissolved in phos-
phate-buffered saline (PBS) and administered orally to mice 
by use of a stomach tube.  Control animals received vehicle 
(PBS) without drug.  The volume of solution administered was 
0.25 mL/mouse.  

Stress-induced depression-like and anxiety-like 
model mice
   Chronic mild stress (CMS) was applied to the mice according 
to a previously published method [23] with a slight modifica-
tion [24].  As shown in Figure 2, mice were exposed to CMS, 
which consisted of 3 different and sequential stress situations: 
inclining their cage by 20 degrees from the horizontal (CMS1), 
keeping them on chip bedding fully wetted with water (CMS2), 
and shaking their cages at 180 rpm by use of a rotatory shaker 
(CMS3).  CMS1, CMS2, and CMS3 were sequentially applied 
for 48, 24, and 24 h, respectively, with a 24-h interval between 
each CMS.  This set of stress-loading was repeated 3 times over 
a 20-day period.   

In order to evaluate the protective activity against the depres-
sion- and anxiety-like symptoms, we administered the drug 
once a day for 21 days starting at the time of the first stress-
loading till the end of the stress-loading period (Figure 2A).  
On the other hand, for the experiments to test the therapeutic 
activity, the drug was injected once a day for 7 or 14 days start-
ing the next day after the end of the stress-loading (Figure 2B).   

Tail suspension test (TST)
TST is a standard assay for the depression state because de-
creased motivation is a hallmark symptom [25].  In this test, 
a mouse was suspended by its tail from a hanger attached to a 
precision linear load cell [24].  Although measurements were 
taken for 7 min, immobility was calculated by determining the 
time spent immobile during the last 6 min of the test, because 
all mice were uniformly active for the first min.  Immobility 
time was scored by a blinded observer.  Mice that climbed 
their tail or fell off the hanger were excluded from the analysis.

Elevated plus-maze test (EPMT)
 EPMT is a standard test to measure fear and the anxiety-like 
state.  After treatment, the animals were placed in the center 
of a 4-arm maze (30 cm × 5 cm/arm) elevated to a height of 50 
cm, in which 2 arms were open and 2 were closed [26].   The 
number of times the animal entered each of the arms and the 
time spent in each arm were recorded during a 5-min test pe-
riod.  The procedure was conducted in a sound-attenuated 
room.

Light-dark box test (LDT)
LDT is one of the most widely used tests to measure anxiety-
like behavior in mice. This test is based on the natural aversion 
of mice to brightly illuminated areas and on their spontane-
ous exploratory behavior in novel environments [27]. The ap-
paratus consists of a dark chamber and a brightly illuminated 
chamber. Mice are allowed to move freely between the 2 cham-
bers. The number of entries into the bright chamber and the 
duration of time spent in bright-space were recorded during a 
5-min test period.

Figure 1: Chemical structure of CAPE
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Figure 2: Protocols for stress-loading and drug administration.
A: Protocol for evaluation of protective activity. Mice were orally given the drug once a day for 21 days (indicated by the arrows) during exposure to the 3 types 
of CMSs (CMS1, CMS2 or CMS3, indicated as boxes colored white, gray, and black, respectively).  Then, the behavioral test was performed at 1 day after the 
end of the stress-loading (open arrow).  
B: Protocol for evaluation of therapeutic activity. Mice were subjected to the 3 different CMSs (CMS1, CMS2 or CMS3, illustrated as boxes as defined in “A.”) 
for 20 days. Each drug was orally given once a day for 14 or 21 days starting 1 day after the stress-loading, and the behavioral test was performed at 1 day after 
the final drug administration (open arrows). 

Results
Efficacy of CAPE for treatment of the depression-
like symptom
Protective activity against the symptom: The protective ac-
tivity of CAPE against depression-like symptom was evaluated 
according to protocol A (Figure 2A). Mice were divided into 8 
groups (n = 8/group).  Four groups were exposed to the CMSs, 
and the remaining 4 groups were not. Animals of all groups 
were orally administered vehicle or CAPE (10, 50 or 250 µmol/
kg), and subjected to the TST 1 day after the final adminis-
tration.  The immobility time was longer in the stress group 
than the non-stress group, but such difference disappeared by 
CAPE administration (Figure 3). Furthermore, stress-induced 
prolongation of the immobility time was reduced by CAPE in 
a dose-dependent manner, demonstrating that CAPE protect-
ed against the CMS-induced depression-like symptom.    

Therapeutic activity against the symptom: Therapeutic ac-
tivity of CAPE was evaluated by protocol B (Figure 2B).  The 
immobility time in the TST was longer in the stress group than 
the non-stress one. Then, the stress group was divided into 3 
groups (n = 8/group), ensuring a similar behavioral trait dis-
tribution in each group.  Each group was then administered 
vehicle, CAPE (10 μmol/kg) or fluvoxamine (3 µmol/kg) once 
a day for 2 or 3 weeks and then subjected to the TST. After the 
2-week treatment, the immobility time was significantly longer 
in the stress group than in the non-stress one; and CAPE, but 
not fluvoxamine, significantly reduced the stress-prolonged 
immobility time (Figure 4A).  After 3 weeks of treatment, both 
CAPE and fluvoxamine attenuated stress-induced prolonga-
tion of the immobility time (Figure 4B).  These data suggest 

a possibility that CAPE might work more rapidly than fluvox-
amine.  It is well known that some antidepressants take a long 
time, over 3 weeks, to exert their effectiveness, which is a seri-
ous problem of currently prescribed antidepressants.  

Efficacy of CAPE for treatment of the anxiety-like 
symptom
Protective activity against the symptom: Next, the anxiolyt-
ic-like activity was evaluated by protocol A (Figure 2A).  In the 
EPMT, the time spent in the open arms was significantly short-
er in the stress group than in the non-stress group (Figure 5A).  
However, the stress group treated with CAPE (50 µmol/kg) 
spent a longer time in the open arms than the vehicle-treated 
stress group (Figure 5A).  The frequency of entry into all arms 
was constant (Figure 5B).  These results suggested that CAPE 
ameliorated the symptom, because the locomotor activity was 
not influenced by the stress loading or drug administration.

 In the LDT, the results were almost the same as those obtained 
with the EPMT.  The time spent in the bright chamber was 
significantly shorter in the stress group than in the non-stress 
group (Figure 6A).  The administration of any dose of CAPE 
resulted in a loss of this significant difference. The stress group 
treated with CAPE (50 or 250 µmol/kg) spent longer time in 
the bright space than the vehicle-treated stress group (Figure 
6A).  The locomotor activity was not influenced, as judged 
from the constant entry into the bright chamber (Figure 6B). 

Therapeutic activity against the symptom: The anxiolytic-
like activity of CAPE was evaluated by performing protocol 
B (Figure 2B). The time spent in open arms (EPMT) or light 
space (LDT) was shorter in the stress group than in the non-
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stress group. Then, the stress group was divided into 3 groups 
(n = 8/group), ensuring a similar behavioral trait distribution 
in each group. Each group was next orally administered vehi-
cle, CAPE or fluvoxamine once a day for 2 or 3 weeks. 
 In the EPMT or the LDT, the time spent in the open arms or 
in the bright chamber was significantly shorter, respectively, 
in the stress group than in the non-stress group 2 or 3 weeks 
after the end of the CMSs (Figures 7A, B; Figures 8A, B).  In 
both tests, these significant differences disappeared between 
the stress group administered CAPE or fluvoxamine and the 
non-stress group.  Furthermore, in the EPMT, the significant 

Figure 3: Protective effect against the depression-like symptom. 
Mice were daily injected orally with vehicle or CAPE (10, 50 or 250 µmol/kg) 
for 3 weeks with or without exposure to the CMSs and then subjected to the 
TST 1 day after the final administration (see protocol A in Figure 2).  The sig-
nificance of the difference between the value of the stress-exposed group and 
that of the non-stress-exposed group was determined by one-way ANOVA 
with Tukey’s post hoc test as **p<0.01.  Among the stress groups, significant 
differences from the value of the vehicle-treated group were also determined 
by one-way ANOVA with Tukey’s test as #p<0.05.

Figure 4: Therapeutic activity for the depression-like symptom. 
Vehicle, CAPE (50 µmol/kg) or fluvoxamine (3 µmol/kg) was daily injected 
orally for 2 (A) or 3 weeks (B) into mice that had been exposed or not to the 
CMSs (see protocol B in Figure 2).  Then, the mice were evaluated for immo-
bility time in the TST 1 day after the final administration.  The significance 
of the difference between the value of the stress-exposed mice and that of the 
non-stress-exposed mice was determined by one-way ANOVA with Tukey’s 
post hoc test as ***p<0.001.  Furthermore, among the CMS-exposed groups, 
a significant difference from the value of the vehicle-treated mice was simi-
larly determined by one-way ANOVA with Tukey’s post hoc test as #P<0.05, 
##p<0.01.

difference was not found between CAPE- or fluvoxamine-
treated stress groups and vehicle-treated stress group after ei-
ther 2- or 3-week administration (Figures 7A, and 7B).  In the 
LDT, the stress group treated with CAPE spent a significantly 
longer time in the bright space than the vehicle-treated stress 
group (Figures 8A, and 8B).  The stress group treated with flu-
voxamine did so only after the 3-week administration. As the 
frequency of entry into arms or bright chamber was constant 
in all experimental groups, the locomotor activity was not in-
fluenced (Figures 7C, 7D,8C and 8D).  

Influence of CAPE on the levels of pERK1/2 and 
pCREB in the hippocampus
Mice were treated either by protocol A or B (Figure 2). The 
hippocampi were dissected out 1 day after the final behavioral 
test, and used for Western blotting. The ratio of the intensity of 
the band of phosphorylated (p) extracellular signal-regulated 
kinases (ERK) 1/2 to that of total ERK1/2 or phosphorylated 
(p) cAMP-response element-binding protein (pCREB) to that 
of total CREB was expressed as the fold-increase over the value 
(taken as “1”) for the vehicle-treated non-stress group.  
In the mice treated with protocol A, the stress-induced reduc-
tion in the ratio of pERK1/2 or pCREB to total ERK1/2 or 
CREB, respectively, was attenuated by the treatment with 50 
or 250 µmol/kg (but not 10 µmol/kg) of CAPE (Figure 9A, C), 
suggesting that CAPE could protect against the stress-induced 
reduction in intracellular ERK1/2-CREB signaling.  In the 
mice treated with protocol B, the ratio of pERK1/2/ to ERK1/2 
or of pCREB to CRB, which had been reduced by the CMSs, 
was ameliorated by the treatment with CAPE or fluvoxamine 
(Figures 9B, 9D). These results suggest that CAPE activated 
hippocampal ERK1/2 and CREB, and normalized the stress-
induced decrease in their levels.

Discussion
Our present results demonstrate that CAPE was active in 
ameliorating the stress-inducible depression- and anxiety-like 
symptoms in mice, and it is conspicuous that CAPE restored 
the stress-reduced levels of pERK1/2 and pCREB in the hip-
pocampus.  These observations suggest that CAPE acts on par-
ticular brain regions including the hippocampus by generating 
neurotrophin-like intracellular signaling.  

Neurotrophins are a family of neurotrophic factor proteins 
including BDNF as one of its members.  Each neurotrophin 
binds to a specific Trk family receptor tyrosine kinase [28], 
which binding causes autophosphorylation of the receptor 
to trigger signal transduction cascades of pathways involving 
mitogen-activated protein kinases/ERK1/2, phosphatidylino-
sitol 3-kinase, and phospholipase C-γ[29]. Namely, ERK1/2 
is a molecule involved in intracellular signaling pathways 
evoked by neurotrophic factors such as neurotrophins includ-
ing BDNF.  Activated ERK1/2 leads to activation of the tran-
scriptional factor CREB, which factor regulates the expression 
of various genes for a variety of neuronal events including neu-
ronal survival, differentiation, and synaptic plasticity [30,31]. 
Therefore, neurotrophins have been expected to be therapeuti-
cally useful for particular neurological disorders.  However, the 
clinical trials using neurotrophins for the treatment of some 
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Figure 5: Protective effect against the anxiety-like symptom evaluated by the EPMT.
Mice were daily injected orally with vehicle or CAPE, as described in the legend of Figure 3, for 3 weeks with or without exposure to the CMSs; and they were 
then subjected to the EPMT 1 day after the final administration (see protocol A in Figure 2).  The time spent in open arms (A) and the number of entries into 
the arms (B) were then evaluated.  The significance of the difference between the value of the stress mice and that of the non-stress mice was determined by 
one-way ANOVA with Tukey’s post hoc test as **p<0.01.  Among the stress groups, significant differences from the value of the vehicle-treated mice were also 
determined by one-way ANOVA with Tukey’s test as #p<0.05.

Figure 6: Protective activity against the anxiety-like symptom evaluated by performing the LDT.
Mice were daily injected orally with vehicle or CAPE, as described in the legend of Figure 3, for 3 weeks with or without exposure to the CMSs; and they were 
then subjected to the LDT 1 day after the final administration (see protocol A in Figure 2).  The time spent in the bright chamber (A) and the number of entries 
into the bright chamber (B) are indicated. The significance of the difference between the value of the stress mice and that of the non-stress mice was deter-
mined by one-way ANOVA with Tukey’s post hoc test as ***p<0.001.  Among the stress groups, significant differences from the value of the vehicle-treated 
mice were also determined by one-way ANOVA with Tukey’s test as ##p<0.01.

neurological disorders have not been successful [32], probably 
because many technical and pharmacological issues such as 
instability of the proteins and/or a lack of appropriate delivery 
systems are problematic.  To overcome such drawbacks of neu-
rotrophins, we recently developed 2-decenoic acid ethyl ester 
(2-DAEE) as a stable and small molecule with neurotrophin-
like activity [33]; and we found that it could attenuate stress-
induced depression-like [34] and anxiety-like symptoms [35].  

These findings prompted us to examine the activity of CAPE, 
because its neuroprotective activities had been reported earlier 
[17-19, 21]. The results demonstrated that CAPE behaved like 
an antidepressant (Figures. 3, 4) and an anxiolytic (Figures. 
5-8).  

To clarify the underlying action mechanisms of CAPE, we 
evaluated its effect on the levels of pERK1/2 and pCREB in 
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Figure 7: Therapeutic activity against the anxiety-like symptom evaluated by 
use of the EPMT. 
Vehicle, CAPE (50 µmol/kg) or fluvoxamine (3 µmol/kg) was daily injected 
orally for 2 (A, C) or 3 weeks (B, D) into mice that had been exposed or not 
to the CMSs (see protocol B in Figure 2).  Then, the mice were tested for the 
time spent in the open arms in the EPMT (A, B) and the number of entries 
into arms (C, D) 1 day after the final administration.  The significance of the 
difference between the value of the stress mice and that of the non-stress mice 
was determined by one-way ANOVA with Tukey’s post hoc test as *p<0.05.  
Furthermore, among the stress groups, a significant difference from the value 
of the vehicle-treated stress mice was examined by one-way ANOVA with 
Tukey’s post hoc test.

Figure 8: Therapeutic activity against the anxiety-like symptom evaluated by 
performing the LDT. 
Vehicle, CAPE (50 µmol/kg) or fluvoxamine (3 µmol/kg) was daily injected 
orally for 2 (A, C) or 3 weeks (B, D) into mice that had been exposed or not 
to the CMSs (see protocol B in Figure 2).  Then, the mice were tested for the 
time spent in the bright chamber in the LDT (A, B) or the number of entries 
into the  bright chamber (C, D) 1 day after the final administration.  The sig-
nificance of the difference between the value of the stress mice and that of the 
non-stress mice was determined by one-way ANOVA with Tukey’s post hoc 
test as *p<0.05, **p<0.01.  Furthermore, among the stress groups, a significant 
difference from the value of the vehicle-treated stress mice was determined by 
one-way ANOVA with Tukey’s post hoc test as *p<0.05.

Figure 9: Ameliorative activity against the CMS-induced decrease in the hip-
pocampal pERK1/2 and pCREB levels. 
A, C: After daily oral administration of vehicle or CAPE to the mice for 21
days during CMS exposure (see protocol A in Figure 2), the hippocampi were 
dissected out 1 day after the final administration.  Representative images
of Western immunoblots are shown.
B, D: Mice were injected with vehicle or CAPE for 14 days after the end of 
the CMS exposure (see protocol B in Figure 2), and the hippocampi were dis-
sected out 1 day after the end of the administration.  The ratio of the intensity 
of the pERK1/2 (A, B) or pCREB (C, D) band to that of the total ERK1/2 
or CREB band was calculated after Western immunoblotting, and the values 
were expressed as fold-increase over the value of the vehicle-treated non-
stress group taken as “1.”   The significance of differences between the values 
of the stress and the non-stress mice was determined by one-way ANOVA 
with Tukey’s post hoc test as *P<0.05, **P<0.01 or ***P<0.001.  For differenc-
es between values of stress groups, the significance was similarly determined 
by the same statistical treatment as #P<0.05, ##p<0.01.

It has been reported that psychosocial stressors promote in-
flammation and immune dysfunction [38], which have been 
implicated in the development of mood disorders [39,40]. 
Stress-induced macrophage recruitment is evident in specific 
brain regions and has been implicated in anxiety responses.  
Namely, monocyte recruitment to the brain in response to so-
cial stress contributes to the development of anxiety. CAPE has 
anti-inflammatory activities, through which it may regulate the 
anxiety-like state.  We reported previously that CAPE enhanc-
es the recovery of locomotor function and reduces the lesion 

the hippocampus of the model mice, and found that CAPE at-
tenuated the stress-induced reduction in these levels, restoring 
them to normal (Figure 9).  These observations suggest that 
CAPE, having BDNF-like activity, behaved like 2-DAEE.  In 
fact, we found that CAPE facilitated an increase in the level of 
pERK1/2 in neurons cultured from the mouse hippocampus, 
thus supporting this possibility (Soga H. et al., unpublished 
results).  In neurons, activated ERK1/2 phosphorylates numer-
ous proteins involved in various cellular processes including 
long-term potentiation, long-term depression, synaptogen-
esis, and transcriptional and translational regulation [36, 37].  
Namely, the activation of CREB via ERK1/2 may be involved 
in the action mechanisms of CAPE to up-regulate neuronal 
functions including synapse plasticity and ameliorate depres-
sion- and anxiety-like symptoms. 
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Conclusions
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