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Abstract

Due to the inconsistency in the dimensions and properties of the target features and scene features extracted by the Object-
Net, as well as the presence of redundant information that affects scene judgment, resulting in low recognition accuracy, a
new indoor scene recognition method is proposed. Firstly, the attention mechanism is introduced into ObjectNet. Then, the
target features output by ObjectNet are transformed to obtain features with the same dimensions as the original scene fea-
tures. Finally, Context gating (CG) is used to suppress redundant information in the features. Experiments were conducted
on two datasets, MIT Indoor67 and SUN 397. Compared with MR-CNNs networks, the recognition accuracy of ObjectNet
increased by 3% and 2.11% respectively. The results show that by using attention mechanism and CG to suppress redundant

feature information, the accuracy of indoor scene recognition is improved.
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Introduction

In recent years, with the popularization of the In-
ternet and the continuous improvement of people's living
standards, the development of scene recognition technology
has brought more and more services and convenience to
people. Indoor scene recognition is a key part of scene recog-
nition, and the development of indoor scene recognition
technology has broad application prospects in smart homes,

service robots, security monitoring and other fields [1-2].

Although many methods have achieved remark-
able results, there exist issues such as inconsistencies in the
dimensions and properties of extracted target features and
scene features, as well as redundant information that affects
scene recognition, leading to limited accuracy in indoor
scene recognition. This paper proposes a new indoor scene
recognition method by introducing an attention mech-
anism into the object detection network. The target features
outputted by ObjectNet are transformed to match the same
dimension as the original scene features. Subsequently, a
Context Gating (CG) mechanism is employed to suppress
redundant information in the features, thereby enhancing

the role of target features in scene recognition.

Related Research

Early indoor scene recognition typically relied on
features such as color, texture, and shape for identification.
With the widespread application of operators like SIFT,
SURF, and HOG, a popular classification method involved
using various operators to extract environmental features
and then training a benchmark model for scene discrimina-
tion. The widely used models were Bag of Words (BoW)
and its improved versions. For instance, Lazebnik et al. [3]
proposed a spatial pyramid architecture based on the BoW
model for scene recognition. Espinace et al. [4] suggested us-
ing image segmentation to infer scene categories based on
typical objects, but object segmentation in complex scene
environments is itself a challenging task in machine vision.
Additionally, some scholars have combined different mod-
els and features to achieve scene discrimination. Zhao et al.
[5] combined color and local texture features, utilizing
monocular vision and natural landmarks to effectively ac-

complish robot positioning tasks with good recognition re-
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sults. However, these algorithms still heavily rely on manual
operators for feature extraction, lacking generalization abili-
ty, which is significantly improved by deep learning meth-

ods in this aspect.

Among deep learning-based methods, there are
currently many approaches that combine target features for
indoor scene recognition. Inspired by ImageNet [11], Zhou
et al. [6] proposed a new dataset called Places and selected
205 scene categories from it to train a dedicated scene recog-
nition network called Places-CNN. Its recognition accuracy
far surpasses traditional manually designed feature meth-
ods, providing researchers with new methodological gui-
dance. Due to the complexity of indoor scenes containing
multiple targets, global features can be challenging to repre-
sent these target features. Based on this, Antonio et al. [7]
proposed combining global and local features to identify in-
door scenes, utilizing local features to represent target char-
acteristics and improving recognition accuracy. Herranz et
al. [8] introduced a multi-scale feature-based method that
feeds images of different sizes into their respective target
and scene networks for feature extraction, addressing the is-
sue of image size matching with the recognition network.
However, increasing image sizes lead to increased algorith-
mic complexity. Wang et al.[9] presented a knowledge-guid-
ed disambiguation strategy that uses target features extract-
ed from a knowledge network to generate soft labels for
scene images, guiding the scene network to minimize the
loss function. This effectively addresses the issues of small
inter-class differences and large intra-class variations, but
the utilization rate of target features remains low. To im-
prove target utilization, Seong et al. [10] proposed an end--
to-end trainable network called FOSNet. The network em-
ploys a Scene Consistency Loss (SCL) algorithm to calculate
losses in image patches, effectively improving the utilization

of target features in scene images.

Due to the complexity of indoor scenes, uneven il-
lumination, and high repetition of colors and textures, the
aforementioned semantic segmentation methods based on
RGB color images suffer from issues such as mis-segmenta-
tion of object edges and misclassification of categories. This
makes it impossible to achieve precise understanding of en-
vironmental semantic information by intelligent agents. Re-

cent research has found that compared to methods based on
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ordinary RGB color images, RGB-D-based approaches can
utilize additional depth information from the scene. This
depth information is less affected by illumination and can
reflect the positional relationship between objects, comple-

menting the RGB color information.

Couprie et al. [14] found that auxiliary depth infor-
mation can reduce the segmentation error rate for objects
with similar depth, appearance, and positional information.
With the emergence and development of depth cameras like
Kinect [15], it has become easy to obtain depth information
for images. However, finding a way to fuse RGB color infor-
mation with depth information and exploiting their comple-
mentarity has been a challenging problem. Some simple
methods stack depth information onto the RGB color chan-
nels and train the network assuming RGB-D data with four
input channels. But directly fusing depth information as a
fourth channel does not fully utilize the encoded scene struc-

ture information.

Gupta et al. proposed the HHA (Horizontal dispar-
ity, Height above ground, Angle with the inferred gravity di-
rection) depth information representation method, which
converts depth images into three different channels (hori-
zontal disparity, height above ground, and the angle of the
surface normal). However, HHA only emphasizes the com-
plementary information between each channel's data while
ignoring the independence of each channel, and it requires

a significant amount of computation.

Hazirbas et al. proposed a new fusion architecture
called FuseNet (Fusion Network) that integrates comple-
mentary depth information into the semantic segmentation
framework, improving segmentation accuracy. However, it

does not achieve multi-scale fusion.

Hu et al. proposed ACNet (Attention Complemen-
tary Features Network), designing an attention auxiliary mo-
dule to balance feature distribution and enabling the net-
work to focus more on effective regions of the image. While
maintaining the original RGB-D feature branch, it fully util-
izes the fused features of RGB information and depth infor-
mation. However, because scene images contain multiple
target information, this method may not positively impact
scene recognition for all targets, and some may even have a

negative effect on recognition performance. Additionally,
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when fusing scene features with target features, due to the
difference in their dimensions, simple stacking or concatena-

tion can lead to issues such as feature loss.
Multi-Head Attention Machanism

The Attention Mechanism in deep learning is a
method that mimics the human visual and cognitive system.
It allows neural networks to focus their attention on rele-
vant parts when processing input data. By introducing the
Attention Mechanism, neural networks can automatically
learn and selectively focus on important information in the
input, improving the model's performance and generaliza-

tion ability.

It's worth noting that the attention mechanism
does not inherently know how to determine the importance
of information; instead, it requires learning through a signif-
icant amount of training data. During the training process,
the model encounters numerous inputs and their corre-
sponding outputs. Through continuous learning and opti-
mization, the model gradually learns to identify which infor-
mation is crucial and which can be disregarded for a given
task.

In specific implementations, attention mech-
anisms are usually combined with encoder decoder architec-
tures. The encoder maps an input sequence represented by
symbols (usually vectors) (x,,...,X,) to a continuous represen-
tation sequence z = (z,,...,z,). After receiving z, the decoder
generates an output sequence represented by symbols
(Y15---Yny Where y; is generated at each time step, with i repre-
senting any number from 1 to n. At each step, the model au-
tomatically consumes the symbol generated in the previous
step. For example, when generating y,, y, is used as addition-

al input.

The left and right halves of Figure 1 show the com-

plete connections of the encoder and decoder, respectively.
(1) Scaled Dot-Product Attention

Scaled Dot-Product Attention takes as input
queries and keys of dimension dk, and values of dimension
dv. It first computes the dot product of the query with all
keys, divides the result by the square root of dk, and then ap-

plies a softmax function. The output is the weighted sum of
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the values, where the weights are given by the softmax out-

put. The formula is as follows:

Attention(Q, K, V) =

(2) Multi-Head Attention

Compared to performing a single attention func-
tion using keys, values, and queries, it is more advantageous
to perform linear projections h times with different keys, val-
ues, and queries, learning linear projections in dimensions
dk, dk and dv, respectively. For each projected version of

queries, keys, and values, we execute the attention function

QKT
Vi

soft max(

1%

in parallel and obtain a dv-dimensional output value for
each. These output values are then concatenated and pro-

jected again to obtain the final result, as shown in Figure 1.

Multi-head attention allows the model to attend to
information from different representational subspaces at dif-
ferent positions simultaneously [15]. Using only one atten-

tion head would inhibit this capability.

MultiHead(Q, K, V) = Concat(heady, ....., heady, ) W°

head; = Attention(QWE, KWK viwY)

. hdy Xd mod e
Wherein, WE € Rimoaaxde K ¢ pdmodaxd ypV ¢ pdmoaaxdy o g RIWXEmodel

All occurrences of W here represent projection ma-
trices. In this context, we employ h=_8 parallel attention lay-
ers, also known as heads. For each layer, we use

d,=d,=d, ./h = 64, where dmodel refers to the dimensional-

Scaled Dot-Product Attention

l MatMul l

Q K \'

ity of the word embedding vector, which can be deduced to
be 64*8 = 512. Due to the reduced dimensionality per head,
the overall computational cost is comparable to using a sin-

gle attention head with the full dimensionality.

Multi-Head Attention

Concat

t

Scaled Dot-Product
Attention

r— rﬁ—
Linear Linear Linear

Vv K Q

Figure 1: Attention mechanism

The multi-head attention mechanism plays the fol-

lowing key roles in indoor scenes:
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(1) Improving model performance: The attention

mechanism enables neural networks to focus more on key
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information when processing sequential data while ignoring
unimportant parts. This helps improve the accuracy and per-
formance of the model, especially when dealing with long se-

quential data.

(2) Exploring relationships between sequences
from different perspectives: The multi-head attention
mechanism maps Query and Key to different subspaces in a
high-dimensional space, calculates their similarity, and com-
bines attention information from various subspaces. The
aim is to explore relationships between sequences from dif-
ferent viewpoints and enhance the performance of the atten-

tion layer by synthesizing these relationships.

(3) Reduce computational complexity: The multi-
-head attention mechanism reduces the computational re-
quirements for individual vectors by focusing computations
on different subspaces, thereby decreasing the amount of

computation and helping to prevent overfitting.

(4) Introduce nonlinear activation: After each lay-
er of the encoder, a feedforward network (Linear) is typical-
ly connected. This network consists of two layers of linear
transformations, which are used to introduce nonlinear acti-
vation, change the space of attention output, and enhance

the expressive power of the model.

Network Structure

Stgec! ‘eatire

ObjectNet

Corw layws

Overview of Network Architecture

This paper uses Inception as the basic network ar-
chitecture, and the network framework consists of two
parts: the scene recognition network (PlacesCNN) and the
object detection network (ObjectNet) [11], as shown in Fig-
ure 2. PlacesCNN extracts scene features, while ObjectNet
extracts object features, and the two types of features are ul-
timately fused. However, in this process, due to the different
categories and nature of object and scene features, and the
fact that some objects have a smaller role in scene recogni-
tion (such as a computer in a bedroom), or may even have a
counterproductive effect (such as a fully stocked bar in a res-
taurant), directly overlaying or connecting features may not
fully utilize the role of object features. To improve the util-
ization efficiency of object features in indoor scene recogni-
tion, this paper applies an attention mechanism to trans-
form the object features in ObjectNet, so that the dimen-
sions of the object features are the same as those of the
scene features, reducing the loss of object feature informa-
tion. CG is used to suppress redundant information in the
features (such as computers appearing in bedrooms, sofas
appearing in restaurants, etc.), reducing the weight of irrele-
vant features and allowing the network to focus more on rel-
evant target areas of the image, thereby improving the util-

ization efficiency of the object features.

X WGOs
L 3

S50 UG

attentiom

Figure 2: Network Structure

Firstly, object attributes and positional relation-
ships in the image are expressed through position descrip-
tors, and GloVe model is used to extract semantic informa-

tion from the image to generate word vectors. Then, a data
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preprocessing algorithm is used to ensure data formatting,
and the extracted semantic features are input into an LSTM
model based on an attention mechanism. The attention

mechanism improves the accuracy of feature recognition,
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and its output is used as input for the subsequent CNN. Fi-
nally, scene classification is performed using the Softmax

function.

Feature Transformation

To transform the object features extracted by Ob-
jectNet into scene features, avoid the direct overlay or con-
nection of two distinct features, namely object features and
scene features, and improve the fusion effect at the feature
level, an attention mechanism is introduced into the com-
bined method of object detection and scene recognition, as
shown in Figure 3. The attention mechanism is placed after
ObjectNet to process the object features. The input object

features are extracted from ObjectNet, and the output fea-

object—rscene

Where in, inyz®?*" € R",W € R"™,b € R™ Variable
n is the dimensionality of the input vector, and m is the di-
mensionality of the output vector. If the ImageNet dataset is

used to train the object module, then n=1000. If the Places 2

tures represent the attention-adjusted representation. The

attention calculation is as follows:

To convert the object features extracted by Object-
Net into scene features, prevent the direct superposition or
concatenation of two distinct feature types—object features
and scene features—and enhance the fusion effectiveness at
the feature level, an attention mechanism is introduced in
the integrated approach of object detection and scene recog-
nition. As depicted in Figure 2, the attention mechanism is
positioned subsequent to ObjectNet to manipulate the ob-

ject features. The input object features, denoted as

object
iNYxr , are extracted from ObjectNet, while the out-

object— scene
put features are designated as i7'YY . The

computation of attention is outlined below:

— onbject + b

dataset is used to train the scene module, then m=365. The
relationship between objects and scenes can be analyzed
from the attention weights. If an object frequently appears
in a particular scene, the corresponding weight will be high-
er; conversely, if an object rarely appears, the weight will be

lower.

Ty

Scene feature

object feature

scene

v
_ :
Scene recognize

odject=»scene

Attention —_—

oy

}
SIS

oblecr scane )

Figure 3: Feature Conversion

Redundant Information Suppression

Each scene image may contain various objects,
and when a particular object appears in a scene image, it is
highly likely that this scene belongs to a specific category.

For example, the presence of a bed is significant for identify-
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ing a bedroom, or a bathtub for a bathroom. However,
other irrelevant features can influence the network's judg-
ment. To reduce the weight of irrelevant features, this paper
introduces Context Gating, whose calculation is shown in

Figure 2:
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/scene __

Yy
Based on the characteristics of the scene, the out-

scene

put is: Y =y
Wherein, x represents the scene features extracted
by the scene network, o represents the element-wise prod-
uct at corresponding positions in the matrix, and o(x) is the
sigmoid activation function. Due to the characteristics of
the sigmoid activation function, its left end approaches 0
asymptotically, while its right end approaches 1, forming a
"gate" that restricts information. When irrelevant informa-

tion passes through this gate, the function value tends to-

wards 0, suppressing the irrelevant information.
Method Comparison

The approach proposed in this paper, integrating
the multi-head attention mechanism with Context Gating
(CG) technology, exhibits significant advantages in design
philosophy compared to other methods. The following is a
detailed comparison with ResNet-50 with Transfer Learn-
ing, DenseNet-121 with Data Augmentation, and VGG-16
with Spatial Pyramid Pooling (SPP).

ResNet-50, a deep residual network, excels in in-
door scene recognition tasks through transfer learning. In
contrast, the method in this paper further optimizes the pro-
cesses of feature extraction and suppression by introducing
the multi-head attention mechanism and CG technology.
The attention mechanism enables the model to focus on
salient features, while CG technology effectively mitigates
the interference from redundant features, thereby enhanc-

ing the model's recognition capabilities in complex scenes.

DenseNet-121 leverages dense connections to en-
hance feature reuse and achieves remarkable results in in-
door scene recognition with data augmentation techniques.
The method presented in this paper, however, elevates
recognition accuracy further through the enhancement of
feature extraction via the multi-head attention mechanism
and the optimization of feature suppression using CG tech-
nology. The multi-head attention mechanism allows the
model to attend to multiple crucial feature regions simulta-
neously, improving recognition outcomes, while CG tech-
nology plays a pivotal role in suppressing irrelevant fea-

tures.
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VGG-16, combined with Spatial Pyramid Pooling
(SPP) technology, excels in multi-scale feature extraction by
fusing features across different scales. In comparison, the
method in this paper achieves higher multi-scale feature ex-
traction and fusion capabilities through the superiority of
the attention mechanism in feature selection and the contri-
bution of CG technology in suppressing redundant features.
The attention mechanism enables the model to dynamically
adjust its focus on different features, thereby more effective-

ly processing complex scenes.
Experiments and Analysis
Dataset and Experimental Platform

The indoor scene dataset used in this paper comes
from MIT indoor67 [12], which contains 67 indoor cate-
gories with a total of 15,620 images, and each category has
at least 100 images. The SUN397 [13] dataset consists of
108,754 images, including 397 image categories. The Ima-
geNet dataset, which ObjectNet uses to extract targets from
scene images, contains 1,000 object categories. Some scenes

from the datasets are shown in Figure 4.

The specific implementation of the algorithm in
this paper uses the deep learning framework Tensorflow .
The experimental environment is the Ubuntu 15 operating
system, accelerated by two NVIDIA 1080Ti Graphics Pro-
cessing Units (GPUs).

Training Time per Epoch: On two 1080Ti GPUs,
the training time for each epoch is approximately 2 hours
for the MIT Indoor67 dataset, and around 5 hours for the
larger SUN397 dataset.

Total Training Time: Generally, deep learning
models require tens to hundreds of epochs to achieve con-
vergence. Assuming 100 epochs of training on the MIT In-
door67 dataset, the total training time is estimated to be 200
hours (approximately 8 days). For 50 epochs on the
SUN397 dataset, the total training time is projected to be
250 hours (approximately 10 days). It's important to note

that these estimates are based on specific hardware configu-
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rations, and actual times may vary depending on different

hardware or training parameter settings.

Memory Requirements: Due to the introduction
of attention mechanisms and the Context Gating module,
the memory requirements for a single forward and back-
ward pass are relatively high. Each of the two 1080Ti GPUs,

with 11GB of memory, is sufficient to meet the memory de-

mands of this study.

Storage Space: The substantial intermediate re-
sults, model parameters, and log files generated during train-
ing require ample storage space. The total storage require-
ment is estimated to be in the range of tens to hundreds of
GB, depending on the number and frequency of check-

points saved during training.
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Figure 4: Examples of some scenarios in the MIT Indoor67 dataset

Analysis of Experimental Results

The experiment was trained using gradient des-

cent method, with a decay coefficient of 0.0001, a mini--

Accuracy =

batch size of 256, and an initial learning rate of 0.001. The
evaluation index used was accuracy calculated through the

confusion matrix, which is defined as follows:

TP+ TN

Wherein, the meanings of TP (True positive), TN

TP+ FP+FN+TN

(True negative), FP (False Positive), and FN (False Nega-

tive) are shown in Table 1.

Table 1: confusion matrix

Real results

Predict results

Positive Negative
Positive TP FN
Negative FP TN

TP: Positive samples predicted as positive by the model.

FP: Negative samples predicted as positive by the model.

EN: Positive samples predicted as negative by the model.

TN: Negative samples predicted as negative by the model.

The results indicate that by transforming the tar-

get features and suppressing redundant information, the ex-
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pressive ability of the features and the effectiveness of fea-

ture fusion are enhanced. As shown in Table 2, Sum and
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Concat represent two fusion methods of feature summation
and concatenation, respectively. On the MIT Indoor67 da-

taset, the recognition accuracy of the proposed algorithm in

this paper reaches 87.40%, which is up to 3% higher than
several other algorithms; on the SUN397 dataset, the recog-
nition accuracy of the proposed algorithm reaches 79.75%,

which is 2.11% higher than other algorithms.

Table 2: The accuracy of this algorithm and other algorithms on the MIT Indoor67 and SUN397 datasets

Algorithm MIT Indoor67 SUN397
MR-CNNs 85.40 77.64
MR-CNNs+ObjNet+Sum 86.21 78.10
MR-CNNs+ObjNet+Concat 86.73 78.26
The algorithm in this article 88.40 79.75

Compared to the detection method of the original
network, the proposed method in this paper has a signifi-
cant inhibitory effect on the redundant information con-
tained in the features extracted by the object detection net-

work.

Model Analysis

To test the performance of the method in this pa-
per on other network architectures, this paper takes Res-
Net-18 as an example and analyzes the recognition accuracy
of the model on the MIT Indoor67 dataset through the com-
bination of CCM and Context Gating, as shown in Table 3.

Table 3: Comparison of the combined effect of attention and Context Gating

Attention CG Accuracy Recall F1
- - 85.40 78.60 81.86
\/ - 86.45 79.30 82.72
- \/ 85.97 80.22 82.99
V V 88.25 82.02 86.03

According to the data in Table 2, when the net-
work is equipped with only CCM or CG, the accuracy rates
are 86.35% and 85.91% respectively, representing an in-
crease of 1.05% and 0.57% compared to the original net-
work's 85.40%. However, when CCM and CG are used to-
gether, the accuracy rate reaches 88.25%. The experiments
prove that the method in this paper has improved the accu-

racy of indoor scene recognition to a certain extent.

Conclusion

This paper proposes an improved indoor scene
recognition method that combines object detection and
scene recognition, aiming to address issues such as the in-

consistency in nature and dimensions between object fea-
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tures and scene features, as well as feature information re-
dundancy in indoor scene recognition. Through an atten-
tion mechanism, object features in scene images are trans-
formed into scene features, and Context Gating (CG) is util-
ized to suppress redundant information in the features,
thereby enhancing the role of object features in indoor
scene recognition. Preliminary experimental results have

been achieved.

This method could be particularly beneficial in
smart home systems, where precise indoor scene recogni-
tion is crucial for automating household tasks and enhanc-
ing user experiences. For instance, smart home devices
could better interpret different room types and adjust light-

ing, temperature, and even suggest activities based on the

J Data Sci Mod Tech 2024 | Vol 1: 204



identified scene.

Service robots would greatly benefit from this en-
hanced recognition method. Robots in environments such
as hospitals, hotels, or homes for the elderly could more ac-
curately identify and navigate different rooms, ensuring effi-

cient and safe task completion.

Security monitoring is another area where this
method proves advantageous. Enhanced indoor scene recog-
nition can improve the accuracy of surveillance systems in
detecting and identifying unauthorized access or unusual ac-
tivities within different indoor environments. This leads to
more reliable security systems that can promptly alert securi-

ty personnel to potential threats.

However, the method proposed in this paper faces

the following challenges:
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One primary issue is the need for large-scale, anno-
tated indoor scene datasets. These datasets are crucial for
training convolutional neural networks from scratch, but
they are often scarce, which limits the development and

refinement of robust scene recognition models.

(2) Another challenge is the computational com-
plexity associated with the attention mechanism and feature
transformation processes. While these techniques enhance
recognition accuracy, they also demand significant computa-
tional resources, which may not be readily available in all ap-

plication settings.

Indoor scene recognition technology has broad ap-
plication prospects in today's digital era. With the continu-
ous development of technologies such as the Internet of
Things, big data, and artificial intelligence, indoor scene
recognition technology will play an important role in vari-

ous fields.
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