
Journal of
Computer Science and Software Development

©2024 The Authors. Published by the JScholar under the terms of the Crea-tive Com-
mons Attribution License http://creativecommons.org/licenses/by/3.0/, which per-
mits unrestricted use, provided the original author and source are credited.

JScholar Publishers J Comput Sci Software Dev 2024 | Vol 3: 102

Research Article Open Access

Software Reliability Trends and Mechanism: A Conceptual Framework

Arpita Tiwari*

Department of Information Technology, Manipal University, Jaipur, India

*Corresponding Author: Arpita Tewari, Department of Information Technology, Manipal University, Jaipur, India, Tel:

8299609348, E-mail: aritiwari10@gmail.com

Received Date: January 16, 2024 Accepted Date: February 16, 2024 Published Date: February 19, 2024

Citation: Arpita Tiwari (2024) Software Reliability Trends and Mechanism: A Conceptual Framework. J Comput Sci Software

Dev 3: 1-13

Abstract

Software Reliability is an intra-disciplinary research area that paves the way for finding customer oriented view of software

quality. This paper attempts to establish practical and useful capabilities of software reliability in boisterous paradigms, with

a focus on reliability improvement that has a direct bearing on the quality of software.

This paper observes the denotation of software reliability, reviews reliability analysis techniques, identifies the design pro-

cess as the main source of software faults. This has led to the development of number of design methodologies of reliability

models. In this study, the inputs to software reliability are considered. Problems that may arise have also received consider-

able attention. A small number of models are also shown with their virtues to monitor the reliability data as they progress

through the various phases of the software life cycle.

Keywords: Software Quality; Software Reliability; Reliability Prediction

2

JScholar Publishers J Comput Sci Software Dev 2024 | Vol 3: 102

Introduction

In the realm of software quality, software reliabili-

ty stands as a crucial attribute alongside functionality, usabil-

ity, performance, serviceability, capability, instalability,

maintainability and documentation. Nevertheless, attaining

software reliability poses a formidable challenge due to the

intricate nature of software which often exhibits high levels

of complexity.

For any system with a high degree of complexity,

including software, it is difficult to reach a certain level of re-

liability. But then System developers tend to push complexi-

ty into the software layer, with the rapid growth of system

size and ease of doing so by upgrading the software.

The reliability of software exhibits an inverse rela-

tionship with its complexity, whereas other crucial aspects

of software quality, such as functionality and capability, de-

monstrate a direct correlation with complexity.Emphasiz-

ing these features tend to add more complexity to software.

Review of literature introduces various prior research work

done in the domain of software reliability.

Software Reliability Spectrum

Software reliability growth can be monitored us-

ing software reliability growth models. Many software relia-

bility models have been developed till date which focus on

error counts and do not directly model the software develop-

ment environment. Exponential error rate was assumed for

these models. There are few models that attempt to model

software reliability based on certain design factors that exist

during the software development process. Fault introduc-

tion, fault removal, and the environment were considered

to model software reliability. Some of the model are estima-

tors because they used primarily during test phase and are

continually updated as data are collected. A few models are

predictive in nature, which actually predict reliability before

the coding begins.

In order for a model to be considered effective, it

is essential that the assumptions it is based on are applicable

to the specific development process it is intended to be util-

ized for.

Before a model is implemented, the assumptions

must be verified as consistent with what is expected to be ex-

perienced on the project. If it is not known which of the

models most closely fits the current projects, it may be wise

to implement more than one model and the examination of

the outcomes or the execution of models utilizing past data

from a comparable item is essential for a comprehensive

analysis.

It is good idea to implement more than one model

on a given project even if information is available on the

product.

Miscellaneous of work have been done in the area

of software fault analysis, prediction and evaluation. This

analysis provides a more complete method to apply soft-

ware reliability modeling techniques to existing software sys-

tems and proposed design changes [12].

A system must function sufficiently reliably for its

application, but it must also reach the market at the same

time before its competitors and with a competitive cost.

Some systems may be less market-driven than others, but

balancing reliability, time of delivery, and cost is always im-

portant. Quantitative planning and tracking can be em-

ployed as a highly efficient approach to engineer the test

process. By utilizing this method, one can effectively en-

hance the overall effectiveness of the testing process.

Software reliability engineering combines the use

of quantitative reliability objectives and operational profiles.

The work done by Musa was experiment by 70 project man-

agers in specification of their practice. But still very less stan-

dard practices are explored till now [15].

Virtues and Flaws

One of the most notable limitations in many soft-

ware reliability models is the strict requirement of indepen-

dence between consecutive software failures. This assump-

tion assumes that each failure event is completely unrelated

to any previous or subsequent failures, which may not al-

ways hold true in practice. This research work has studied

several significant models and explained the software relia-

bility modeling framework that can consider the phenome-

na of failure correlation and to study its effects on the soft-

ware reliability measures, it also explicates the precautions

3

JScholar Publishers J Comput Sci Software Dev 2024 | Vol 3: 102

in using reliability growth models. It allows construction of

the software reliability model in both discrete time and cont-

inuous time, and (depending on the goals) to base the analy-

sis either on Markov chain theory or on renewal process the-

ory. Thus, modeling approach is an important step toward

more consistent and realistic modeling of software reliabili-

ty.

A lot has been said and published about the merits

and limitations of reliability predictions as contrasted to reli-

ability testing and assurance techniques from a product de-

velopment standpoint. It also endeavors to address in-

quiries such as: are reliability prediction methods based on

MIL (Meaningful Information Level) beneficial? During

which phases of the product development proceeds? Which

aspects of the prediction can be feasibly utilized, and which

ones should be disregarded? How can the precision of relia-

bility predictions be enhanced? Each method presents a spe-

cific advantage at a particular expense and is constrained by

a temporal factor. There is no solitary solution in accurately

predicting and showcasing reliability.

Balancing \cost, benefit and time, the essential ele-

ments of a new product reliability and quality assurance pro-

gram, provide a framework for selecting the methods. Spe-

cific, theoretical and practical concepts are employed to ex-

emplify the principles and elucidate the techniques that

have been effectively utilized with promising outcomes. In

addition, useful interpretations of reliability predictions are

presented, as it appears many popular misconceptions exist

in the electronics industry.

Many input-domain and time-domain models can

be derived as special cases under the assumption of failure -

independence. This paper aims at showing that the classical

software reliability theory features and extensions to consid-

er a sequence of possibly – dependent software runs, viz, fail-

ure correlation. It does not deal with inference or with pre-

dictions, per se.e This gives the detailed assumptions about

the nature of the overall reliability growth.

Way modeling-parameters change as a result of the
fault-removal attempts [19].

Assortment of Software Reliability Models
Software reliability models are classified according

to Software Development Life Cycle (SDLC) phases. This

work figures out and defined a number of criteria on the ba-

sis of its importance level; for software reliability model se-

lection. Different phases of SDLC. Software reliability assess-

ment methods for concurrent distributed system develop-

ment can be done by using the Analytic Hierarchy Process.

Also, in this work a comparison has been made between the

inflection S-shaped software reliability growth model and

the alternative models utilizing a heterogeneous Poisson

process have been employed to evaluate the dependability

of the complete system comprising multiple software ele-

ments.

Moreover, this work analyzes actual software fault

count data to show numerical examples of software reliabili-

ty assessment.

4

JScholar Publishers J Comput Sci Software Dev 2024 | Vol 3: 102

Figure 1: Software Development Life Cycle Process

Early Life Cycle Activities that Affect Reliability

The reliability of software can be improved by re-

ducing the number of faults introduced through human-er-

ror, increasing the rate of discovery of these faults, or both.

This can be accomplished through four activities linked

with the software life cycle: fault avoidance, fault elimina-

tion, fault tolerance, and structured maintenance (Lyu,

1996:19). Fault Avoidance Fault avoidance consists of apply-

ing sound software engineering practices, including compre-

hensive standards such as documentation, design, and pro-

gramming; rigorous quality assurance techniques like for-

mal reviews, inspections, and audits; and independent verifi-

cation and validation (Lyu, 1996:20). Inspections, reviews,

audits and independent verification and validation can each

be applied to any well-defined work product such as require-

ments and design documents, test plans, hardware logic,

and code (Russell, 1991:26). Another engineering tech-

nique, the Cleanroom Software 2-7 Development Process, al-

so known simply as Cleanroom, also provides a mathemati-

cal correctness verification approach to software fault avoi-

dance. Detection of faults in the transformation of require-

ments to specification is an early step in fault avoidance. By

inspecting random samples of the formal specification as it

is being written, ambiguities and misunderstandings in the

transformation process can be identified. These ambiguities

are brought to the attention of the developer and the defects

are pointed out. According to Gilb, (1996:26) 62% of defects

occur during the design process, and 38% are created dur-

ing coding. Inspections and Cleanroom processes are proac-

tive approaches to ensuring that defects are not allowed to

reside in a software program and that they are removed pri-

or to coding or testing. The use of inspections and Clean-

room processes result in a software product that is less

prone to defects, thus increasing software quality and relia-

bility. Fault Elimination Fault elimination is accomplished

through design and code inspections, mathematical correct-

ness verification, and effective testing. According to Lyu

(1996:20), eliminating all faults in the code through exhaus-

tive testing or mathematical-proof-of-correctness is theoreti-

cally possible. However, in practical terms, it becomes im-

practical to achieve this in systems of significant size and

complexity.

Inspections are a more practical approach than ex-

haustive testing to eliminating software faults and they are

conducted earlier in the development life cycle when the

cost-savings are the greatest. Test coverage models are avail-

able to assess the effectiveness of the test strategies em-

ployed by the software 2-8 developer later in the life cycle.

Common testing methods will identify many, but certainly

not all, faults (Lyu, 1996:20). Fault Tolerance Fault toler-

ance is achieved through special programming techniques

that enable the software to detect and adequately recover

from error conditions. One method of programming fault

tolerant software is the development of redundant software

elements that provide alternative means of fulfilling the

same function. The different versions must be programmed

5

JScholar Publishers J Comput Sci Software Dev 2024 | Vol 3: 102

such that they will not both fail in response to the same in-

put state. A more common, but less effective, example of

fault tolerance is the use of exception handling in Ada (Lyu,

1996:21). Structured Maintenance Each software mainte-

nance action should be performed as a microcosm of the

full development life cycle. As such, the techniques of fault

avoidance, elimination, and tolerance can be applied to

modifications made during the maintenance of software as

well. This is necessary to avoid introducing new faults as a

result of code modifications made to correct known faults,

add enhancements, or adapt the software to changes in the

computing environment (Lyu, 1996:21).

Figuration of Software Reliability Growth Models

Figure 2: Types of Software Reliability Growth Model

Figure 3: Process comparison between Normal development and Software Growth model

Intensity of Failure: Normal Development and

Deployment Vs Reliability Growth Model

Taxonomy of Software Reliability Models

Research Question

Software reliability models determine the amount

of testing required to say with confidence that the software

6

JScholar Publishers J Comput Sci Software Dev 2024 | Vol 3: 102

is fault-free. These models are used late in the development

life cycle when the costs to make those corrections are 100

times more expensive (Fagan, 1976:37). Therefore, what is

needed are software reliability models that can be used early

in the software development life cycle to determine the relia-

bility of the software. This need led to the question that the

Air Force Operational Test and Evaluation Center (A-

FOTEC) wanted answered: "What are the current early life

cycle software reliability prediction models and which

should be recommended for AFOTEC to use in support of

operational assessment?" delineates the patterns of software

malfunctions over time.

Time variable is regarded as a random variable

characterized by a certain probability density function, (pd-

f). The reliability models in this class vary with respect to

the assumptions made with regard to the form of the proba-

bility density function.

Figure 4: Pattern of Software Reliability Model

The Software Reliability Model characterizes the

structure of a stochastic process that delineates the patterns

of software malfunctions over time.

Time variable is regarded as a random variable

characterized by a certain probability density function, (pd-

f). The reliability models in this class vary with respect to

the assumptions made with regard to the form of the proba-

bility density function.

Time between Failure Reliability Models

According to Jelinsky&Moranda, 1972; Failures oc-

cur at some discrete time Fi(ti)=z(ti)exp(-z(ti)ti) where mo-

ments t1, t2, …ti are independent exponential distributed ran-

dom variables

z(ti) = [�N0 - (I - 1)] where N0 - number of initial

faults is unknown Hazard rate (the probability of failure in

interval ti)

After n failures the mean Time to Failure (MTTF) is computed as follows:

7

JScholar Publishers J Comput Sci Software Dev 2024 | Vol 3: 102

Inference procedure: maximum likelihood estima- tion

Objective

Max�, N0L

Resolve numerically the following two equations

with respect to the parameters of the model using any

method of non-linear optimization:

Illustration of Jelinsky & Moranda Model

Sample software reliability data:

t1=7, t2=11, t3=8, t4=10, t5 =15, t6 =22, t7 =20, t8

=25, t9 =28, t10=35

Model Parameters Values

Δ = 0.0096 and N0 = 11.6

Estimated MTTF:

8

JScholar Publishers J Comput Sci Software Dev 2024 | Vol 3: 102

Jelinski-Moranda Model

Assumptions:

The software has N0 faults at the beginning of the

test.

Each fault is autonomous, and every single fault

will result in a failure when subjected to testing.

The repair process is instantaneous and perfect,

i.e., the time to remove the fault is negligible, new faults will

not be introduced during fault removal.

Goel-Okumoto Imperfect Debugging Reliability
Model

This model extends the basic JM model by adding

an assumption:

A fault is removed with probability p whenever a

failure occurs.

The failure rate function of the base JM model

with imperfect debugging at the ith failure interval becomes

λ (ti) = ф [N- p(i – 1)], i =1, 2,…,N

The reliability function is

R(ti) = e -ф (N-p(i-1))ti

Failure Counting Reliability Models

Concerned with counting the number of faults de-

tected in a certain time interval.

A representative model: Goel-Okumoto NHPP re-

liability model

Non-homogeneous Poisson process (NHPP)

This group of models provides an analytical frame-

work for describing the software failure phenomenon dur-

ing testing.

The main issue in the NHPP model is to estimate

the mean value function of the cumulative number of fail-

ures experienced up to a certain time point.

Goel-Okumoto NHPP Reliability Model

N(t): Cumulative Number of Failures at time t

N(t)is as a Poisson process with a time-

dependent failure rate

File dependent rate follows an exponential

distribution

Where m(t) = a(1-e-bt) and ʎ(t) ==m’(t) = abe-bt

In this equation:

m(t) is expected # of failures over time

(a.k.a. the cdf F(t)) is the failure density

(a.k.a. probability density function f(t))

a is the expected number of failures to be

observed eventually

b is the fault detection rate per fault

9

JScholar Publishers J Comput Sci Software Dev 2024 | Vol 3: 102

The Proposed Framework

Figure 5: Structure of Proposed Methodology

The proposed methodology contains the following

steps

S1. Holding a review of literature

S2. Making a selection of significant elements as

arousing affect stuff as well as non-affecting stuff

S3. Choosing the relevant stuff

S4. Selection of most relevant process between

most and less relevant elements

S5. Determining the properties of method

S6. Collection of Databases

S7. Testing the relevancy of technique

S8. From databases choose the most relevant tech-

nique

S9. Among multiple techniques like most relevant,

less relevant; choose the best.

S10. Designing of stuff is done after best relevant

technique

S11. Designing of Inference Engine

S12. Applying the proposed methodology

S13. Making the result optimal

10

JScholar Publishers J Comput Sci Software Dev 2024 | Vol 3: 102

The keys out features of the proposed model says

that

Step 1: Holding a review of literature

A lot of research has been carried out reliability es-

timation, Reliability prediction; sometimes at early stage or

later stages of software development life cycle. The objective

of literature review is to look back upon a period of time or

sequence of events. It shows the major research contribu-

tion in the field of software reliability and identifies the fu-

ture research areas in software reliability estimation and pre-

diction.

Step 2: Making a selection of significant ele-
ments as arousing affect stuff as well as non-affecting
stuff

After reviewing the literature it is very important

to select the elements that are touching on and also separate

the elements i.e. non-affecting stuff.

Step 3: Choosing the relevant stuff

Selecting stuff to go through towards research re-

quires thought and care. Not all data are relevant. Some da-

ta may be misleading. Generally different subsets of the stuf-

f address different research questions among all finding the

relevant stuff is based on the multiple factors.

Step 4: Selection of most relevant process be-
tween most and less relevant elements

Focusing on the most relevant process in a poten-

tially overwhelming environment; repeatedly selecting ex-

amples and then labeling them according to the require-

ment In this process, feature selection, alternatively referred

to as variable selection, attribute selection, or variable sub-

set selection, encompasses the procedure of choosing a sub-

set of pertinent features (variables, predictors) to be em-

ployed in the construction of a model.

Step 5: Determining the properties of method

In this step, Methods for determining the proper-

ties of heterogeneous methods are analyzed. Determination

of the physical properties, methods and means of determin-

ing other properties, elemental analysis of method proper-

ties, finding the properties through experimental method

are concerned.

Step 6: Collection of Databases

Depending on what is being referenced, databases -

can be grouped by: “package”, “compilation” · “aggregate”,

“corpus” “cluster” anything that makes sense. This step de-

termines that databases hold one or more collections of doc-

uments. Among collection, select a database to use only.

Step 7: Testing the relevancy of technique

The choice of the right techniques is critical to test

but is essential to achieve a good return on the suitable in-

vestment. This step tests the technique for finding the most

relevant technique towards its process.

Step 8: From databases choose the most relevant
technique

In addition, one of the most important factors is

the choice of most relevant technique from database. Query

for optimized technique in Database Design and Architec-

ture often seem that prioritizing good design up-front will

cost more while natural data types that fit the data being

stored indicates that it is no longer relevant and can be ig-

nored having no use.

Step 9: Among multiple techniques like most rel-
evant, less relevant; choose the best.

One of the selections of method depends on the

most relevant. To handle the increasing variety and com-

plexity of predicting problems, many techniques have been

developed in recent years. Each has its special use, and care

must be taken to select the best technique for a particular ap-

plication.

Step 10: Designing of stuff is done after best rele-
vant technique

This step is concerned about the designing of stuff

i.e done after the choice of most relevant technique from

database. Hence, good Technique needs a good beginning

in the design process. Appropriate actions or operations

used in making something or bringing about a desired re-

sult: a ... No matter what is doing, it must have proper meth-

11

JScholar Publishers J Comput Sci Software Dev 2024 | Vol 3: 102

ods about the design purpose and processes after the rele-

vant technique.

Step 11: Designing of Inference Engine

This step involved in drawing a conclusion or mak-

ing a logical judgment on the basis of circumstantial evi-

dence and prior conclusions rather than on the basis of di-

rect observation. This inference engine interprets and evalu-

ates the facts in the knowledge base in order to provide an

answer. Typical tasks for expert systems involve classifica-

tion, diagnosis, monitoring, design, scheduling etc. The ex-

pert system is empowered by the inference engine to make

logical conclusions based on the rules stored in the knowl-

edge base (KB).

Step 12: Applying the proposed methodology

All the steps will be arranged according to pro-

posed methodology and the necessary execution will be per-

formed on this.

Step 13: Making the result optimal

It determines the final result.

Benefits of Proposed Model

The proposed model is well organized and each

step has taken with conscious thought.

It will well efficient because only important

elements have been included.

It increases the productivity

It Saves time

It Saves money

High-quality visuals increase viewer

interaction

Graphic communication: it's more than a

trend.

Data helps us analyze Decisions. Important

business decisions have to be made on almost a daily

basis.

Transparent Information

I t u t i l i zes the Ana lys i s to make

Improvements.

Use Data to for Advantage.

Reliability and validity are intricately

connected, although they encompass distinct

concepts.

In this proposed model, Reliability refers to how

consistently a method measures something.

Precautions in Using Reliability Growth Models

A fixed number of software faults will be

removed within a limited period of time.

In particular condition of in the observed

process the number of faults is not fixed e.g. new

faults are inserted due to imperfect fault removal, or

new code is added),then one should adopt a model

that does not suffer from this assumption.

Software should not be operated in a

manner different from the way it is tested the failure

history of the past will not reflect these changes, and

poor predictions may result.

Most reliability growth models are

primarily applicable from testing onwards. The

software is believed to have reached a level of

maturity where significant modifications are no

longer being implemented.

Predictions about Future Work

Software reliability models are employed to esti-

mate and forecast the reliability of software. The selection of

an appropriate software reliability model for a specific sce-

nario has garnered significant attention from researchers in

the realm of software reliability. The limitation and imple-

mentation issue of the model concerns future predictions.

Conclusion

An evaluative description specified in this paper is

12

JScholar Publishers J Comput Sci Software Dev 2024 | Vol 3: 102

intended to provide a foundation for future estimation or

prediction of software reliability using fit reliability growth

model. In this context, current description will extend with

an incorporate notation and mechanism.

Although, measurement models have been used in

many implemented systems, they seem to have been used in

complicating ways, possibly because a clear reliability mea-

surement has never been constructed. Here a very brief de-

scription of the specification has been given that will carry

forward in relation to the framework in future work.

References

1. G Sri Krishna, Rajib Mall, “Model Based Software Reli-

ability

2. Bhagat Singh Rajput, Vaishali Chourey (2015) “UML

Based Approach for System Reliability Assessment”, Interna-

tional Journal of Computer Applications (0975 – 8887) 131:

2.

3. Prediction”, (2010) ICISTM 2010,CCIS 54, pp.

145–55, Springer-Verlag Berlin Heidelberg 2010

4. Awad Ali et al. (2016) “Technique of Early Reliability

Prediction of Software Components Using Behaviour Mod-

els”.

5. Boby John, Rajeshwar S Kadadevaramath, Immanuel

A Edinbarough. (2017) “Review of Software Reliability Predic-

tion Model”, “International Journal for Research in Applied

Science & Engineering Technology” (IJRASET) 5: 4.

6. Martin Jedlicka et al. (2011) “ UML Support for Relia-

bility Evaluation”, International Symposium on Computing,

Communication, and Control (ISCCC 2009) , IACSIT Press,

Singapore, Proc .of CSIT 1.

7. Durga Patel, Pallavi, (2016) Software Reliability: Mod-

els, International Journal of Computer Applications (0975 –

8887) 152: 9.

8. James J. Cusick, PMP, the First 50 Years of Software

Reliability Engineering: A History of SRE with First Person

Accounts

9. Recent Review and current issues in Software Reliabili-

ty Growth Models under fuzzy environment, International,

journal of latest trends in engineering and Technology, 6.

10. Pham H, Pham M (1991) Software reliability models

for critical applications (No. EGG-2663). EG and G Idaho, In-

c., Idaho Falls, ID (United States).

11. Mahmood A, Hameed K, Zameer A, Abdullah A, Sa-

jid S (2022) Review of Software Reliability through Prediction

Models. In 2022 International Conference on Recent Ad-

vances in Electrical Engineering & Computer Sciences (RAEE

& CS) 1-5.

12. Mahapatra GS, Roy P (2012) Modified Jelinski-Mo-

randa software reliability model with imperfect debugging

phenomenon. International Journal of Computer Applica-

tions, 48: 38-46.

13. Dwivedi YK, Kshetri N, Hughes L, Slade EL, Jeyaraj

A, Kar AK et al. (2023) “So what if ChatGPT wrote it?” Mul-

tidisciplinary perspectives on opportunities, challenges and

implications of generative conversational AI for research,

practice and policy. International Journal of Information Ma-

nagement, 71: 102642.

14. Di Bucchianico A (2018) Analyzing various estima-

tion techniques for software reliability growth models.

15. Hanagal DD, Bhalerao NN (2021) Software reliabili-

ty growth models. Springer Singapore.

16. Al Turk LI, Alsolami EG (2016) Jelinski-moranda

software reliability growth model: a brief literature and modi-

fication. International journal of software engineering & ap-

plications (ijsea) 7.

17. Leonard JG, Nordgren RK (1997) An analysis of ear-

ly software reliability improvement techniques.

18. Sahu K, Srivastava RK (2019) Revisiting software reli-

ability. Data Management, Analytics and Innovation: Pro-

ceedings of ICDMAI 1: 221-35.

19. Kumar A (2016) Software reliability growth models,

tools and data sets-a review. In Proceedings of the 9th India

Software Engineering Conference 80-8.

13

JScholar Publishers J Comput Sci Software Dev 2024 | Vol 3: 102

