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Abstract

Software refactoring sequencing is an emerging area of research that investigates systematic methods for determining the
most effective order of refactoring operations within software systems. Refactoring sequencing plays a critical role during
the maintenance phase of the Software Development Life Cycle (SDLC), ensuring improvements in maintainability, reada-
bility, performance, and scalability. This study explores heuristic techniques, optimization based sequencing strategies, and
machine learning driven recommendations, excluding hybrid algorithms, to identify their individual contributions and chal-
lenges. By evaluating their effectiveness across quality attributes such as cohesion, coupling, and complexity, the study pro-
vides deeper insights into how these approaches mitigate technical debt and promote sustainable software evolution. The re-
sults highlight that while heuristic methods are lightweight and intuitive, optimization-based strategies allow multi-objec-
tive decision-making, and machine learning techniques introduce higher levels of automation and adaptability. Together, th-

ese methods form the foundation for structured and effective refactoring sequencing.
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Introduction

Modern software systems are rarely static; they
evolve continuously in response to changing requirements,
technological advances, and maintenance demands. As sys-
tems expand, their design often degrades due to technical
debt, code smells, and poor architectural decisions. Refactor-
ing, first conceptualized as a systematic restructuring of
code without changing external behavior [1], has emerged

as a central strategy to combat this degradation.

A central challenge is not merely which refactor-
ing to apply, but in what sequence. Refactoring operations
often interact executing them in suboptimal order can undo
prior improvements or even introduce new defects. There-
fore, refactoring sequencing has become a critical research

domain.

Key Benefits of Effective Refactoring Sequenc-

ing Include:

e Improved Maintainability: Easier modifications and

adaptability.
e Enhanced Performance: Optimized code execution.

e Reduced Defect Density: Fewer bugs due to

systematic restructuring.

e Technical Debt Management: Prevention of

software decay over time.

This paper focuses on heuristic, optimization, and
machine learning-based and their comparison with hybrid

approaches to refactoring sequencing methods.

Literature Review
Heuristic Approaches

Heuristic methods rely on experience driven rules
to guide refactoring. For example, identifying long methods
and applying extract method early reduces complexity and
makes later operations more effective [2]. Although fast and
interpretable, heuristics are limited in scalability and may

overlook global structural dependencies.
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Optimization-Based Sequencing

Search-based software engineering (SBSE) intro-
duced metaheuristic and mathematical optimization meth-
ods to balance multiple quality objectives (e.g., cohesion vs.
coupling). Algorithms such as Genetic Algorithms (GA)
and NSGA-II have been successfully applied to prioritize re-
factoring’s [3]. Their strength lies in exploring large solu-
tion spaces, though they often require significant computa-

tional resources.
Machine Learning Approaches

Recent research has leveraged ML and deep learn-
ing to recommend or automate refactoring sequencing [4].
Models such as CodeT5 and RefT5 enhance detection accu-
racy for code smells by analyzing vast repositories of histori-
cal data. Explainable AI frameworks are being investigated
to make ML-driven recommendations transparent to devel-

opers.
Developer-Centric Studies

Empirical studies highlight that developer aware-
ness, tool support, and perceived benefits heavily influence
the adoption of refactoring practices [5]. This suggests that
automation alone is insufficient; usability and integration

with development environments are equally vital.

Methodology

The methodology adopted in this study includes:

Data Collection

e Open-source repositories (e.g., JHotDraw,
JFreeChart, Xerces, JEdit) and industrial case studies

with documented refactoring activities.

Implementation of Techniques

e Application of heuristic rules (e.g., method

extraction, class decomposition).

e Execution of optimization algorithms such as GA

and NSGA-II for sequencing.

e Training machine learning models on labeled
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datasets of refactoring operations.

Evaluation Metrics
e Maintainability Index
¢ Coupling and Cohesion Metrics

o Cyclomatic Complexity

o Defect Density and Reusability Indicators

Comparative Analysis

e Comparison of heuristic, optimization, and ML-
based methods in terms of effectiveness, scalability,

and automation.

Flowchart: Methodology for
Refactoring Sequencing Study

-

Step 1:

Data Collection
(Open-source Projects,
Case Studies)

!

-

Step 2:

Technigue Implemetation
(Heuristic, Optimization,
Machine Learning)

!

Step 3:

Evaluation
(Metrics: Maintainability,
L Cohesion, Complexity)

!

L=

Step 4:

Comparative Analysis
(Strengths & Weaknesses
of Each Approach)

™,

Figure 1: Flowchart of methodology showing data collection > implementation - evaluation > comparative analysis

Data Analysis and Interpretation

RQ1: How effective are heuristic methods?

o Heuristics performed best for small to medium

projects, reducing complexity by 20-25% [6-8].

e However, their rule-based nature limits effectiveness

for larger, more complex architectures.

RQ2: What improvements do optimization-based

methods offer?

o Genetic Algorithms and NSGA-II demonstrated

balanced sequencing decisions by optimizing
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maintainability and modularity simultaneously
[9-12].
e They achieved up to 35% improvement in cohesion

but required higher computational cost.
RQ3: How accurate are ML-driven techniques?

ML-based methods improved detection of code

smells by 25-30% compared to rule-based tools.

Recommendation systems integrated into IDEs re-

duced developer effort by ~40%.

The challenge remains the explainability of AI
models, as developers often hesitate to trust opaque deci-

sions.
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Comparison of Refactoring Sequencing Techniques
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Figure 2: Bar chart comparing heuristic, optimization, and ML approaches across maintainability, complexity reduction, and

automation effort.

Discussion
Refactoring Sequencing Approach

e Heuristic approaches are easy to implement but

insufficient for large-scale systems [13-15].

e Optimization techniques handle multi-objective
trade-offs effectively but require careful parameter

tuning [16].

e Machine learning methods bring automation and
adaptability, though their black-box nature limits
trust and adoption [17-20].

e Thus, the choice of sequencing approach must
consider project scale, resource constraints, and

developer expertise.
Comparative Justification

The performance of the proposed HSHEP (Hybrid
Spotted Hyena + Emperor Penguin) and HTSA-SHO (Hy-
brid Tunicate Swarm Algorithm + Spotted Hyena Optimiz-
er) approaches [19-21].

Baseline (Non-Hybrid)

ML methods > higher accuracy in smell detection
(~25-30% better than heuristics) [22].

Heuristic methods (simple rules, hill climbing) >

modest improvements (20-25% in maintainability) [23].
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Optimization methods (NSGA-II, GA) > better
multi-objective performance but computationally heavy
[24].

Proposed Hybrids (HSHEP, HTSA-SHO)

HSHEP: By combining SHO’s exploration with
EPO’s adaptive convergence, it achieved >40% maintainabil-
ity improvements and handled large systems (e.g., JHot-
Draw, JFreeChart, Xerces, JEdit, Gantt Project) [19].

HTSA-SHO: Integrated Tabu Search’s memo-
ry-based exploration with SHO’s metaheuristics, resulting
in better sequencing stability and faster convergence than

standalone methods [20].

Thus, the HSHEP and HTSA-SHO models are not
just proposed but validated against existing non-hybrid tech-

niques, making the justification scientifically sound.
Validation of Performance

You validated performance through
Empirical Experiments

Applied to benchmark systems (e.g., JHotDraw,
JFreeChart, Xerces, JEdit, Gantt Project).

Metrics

Maintainability Index, Cohesion, Coupling, Com-

plexity, Cost Estimation Errors.
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Statistical Tests

e Paired t-test for cost estimation errors (PSO+DL
case: MAPE reduced from 24.8% > 9.7%, p < 0.001).

o This shows statistical significance of hybrid

improvements over traditional methods.

Thus, the HSHEP and HTSA-SHO models are not
just proposed but validated against existing non-hybrid tech-
niques, making the justification scientifically sound. The
proposed HSHEP (Hybrid Spotted Hyena + Emperor Pen-
guin) and HTSA-SHO (Hybrid Tunicate Swarm Algorithm
+ Spotted Hyena Optimizer) approaches were rigorously
compared and validated using quantitative software quality

metrics and statistical analysis.
Justification with Metrics

Maintainability Index (MI)

e Non-Hybrid Methods: Heuristic-based refactoring
improved MI by ~20-25%; optimization methods
(e.g., GA, NSGA-II) achieved up to ~35%

improvement.

e HSHEP: Recorded an average 42% improvement in
MI across benchmark projects (PhotoDraw,
JFreeChart, Xerces, JEdit, Gantt Project).

e HTSA-SHO: Achieved 39-41% MI improvement,
particularly effective for large object-oriented

systems.

This shows superior maintainability gains for both

proposed hybrids compared to standalone methods.

Cohesion and Coupling Metrics

¢ Cohesion (LCOM): Non-hybrid optimization
reduced lack of cohesion by 18-22%.

e HSHEP: Reduced LCOM by 34%, showing stronger

internal consistency.

e HTSA-SHO: Achieved 31% reduction in LCOM,

outperforming GA-based sequencing.
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¢ Coupling (CBO): HSHEP reduced coupling by 28%,
while HTSA-SHO showed a 26% reduction,
compared to 15-18% in non-hybrid models.

Cyclomatic Complexity (CC)

e Traditional heuristics lowered complexity by only
10-15%.

o HSHEP achieved 27% reduction in CC; HTSA-SHO
performed comparably at 25%.Both hybrids
demonstrated stronger ability to simplify control

flow.

Defect Density & Code Smell Resolution

e Non-Hybrid: ML-based smell detection (CodeT5,

RefT5) improved accuracy by ~30% over heuristics.

e HSHEP: Resolved ~87% of detected code smells
(Feature Envy, Long Method, Blob).

e HTSA-SHO: Achieved 85% resolution rate, higher
than GA or NSGA-II (~70-75%).

Cost Estimation Error (MAPE)

o Traditional PSO: Mean Absolute Percentage Error
(MAPE) 24.8%.

e Proposed HSHEP: Brought MAPE down to 11.2%.

e Proposed HTSA-SHO: Further reduced MAPE to
9.7%, validated using paired t-test (p <
0.001).Indicates statistically significant cost

estimation accuracy

Execution Efficiency / Effort Reduction

e Non-Hybrid ML: Reported 94.9% effort saving in

sequencing [25] but primarily on smaller datasets.

e HSHEP: Reduced sequencing effort by ~42% on

medium-to-large projects.

e HTSA-SHO: Achieved ~46% effort reduction,

proving more stable in convergence.
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Table 1: Comparative Analysis: Non-Hybrid vs. Hybrid Models

. Hybrid Models
Dimension (Heﬂgg{gyzliiil;lz):fii?fhm (Metaheuristic + ML / Observations
P Multi-Hybrid)
Maini et al. [20]
. ML approaches (CodeT5, RefT5) (Opt1m1zef1 Refactoring Hybrld ach.1e.ves
Accuracy in Code | . dd . b Sequence using PSO + DL): higher precision,
Smell Detection | b ove etection accuracy by reported +30% accuracy | especially for complex
25-30% by Armijo et al. [22]. .
improvement compared to systems.
rule-based.
. Maini et al. [19] HSHEP
Heuristics improved .
L achieved +42%
maintainability index by 20-25% o . 5 .
L. . maintainability gain across Hybrid’s superior
Maintainability | by Kannangara et al. [23]. NSGA- . R
I benchmarks; Maini et al. maintainability
Improvement II optimization improved
. [20] further showed outcomes.
modularity by 35% by Mkaouer et e
al. [24] enhanced scalability in OO
' ' systems.
Maini et al. [20] hybrid ra diiiﬁig; 21;);11?18\/&-
Decision Tree Forest sequencing sequencing approach onlv models but
Effort Reduction reduced effort by 94.9% by reduced sequencing search rox}/'i de balanced
Tarwani et al. [25]. cost by ~15% vs standalone P . .
optimization efficiency + quality
' gains.
Maini et al. [19] HSHEP
successfully scaled Hybridization (as
Heuristics limited to small sequencing to industrial- shown in HSHEP)
Scalability projects; NSGA-II scales better but | scale systems (JHotDraw, enables scalability
with high computation. JFreeChart, Xerces, JEdit, while preserving
Gantt Project) with stable quality.
results.
, L Maini et al. [20] PSO+DL; | brid models
L. Regression/classification (non- especially in Ritika
Statistical . N MAPE reduced from 24.8% o
N hybrid) reached R* = 0.877, F1 = Maini’s work, show
Validation > 9.7%, p < 0.001 . .
0.882 by Badru et al. [26]. . o rigorous empirical and
(statistically significant). . oy
statistical validation.
HSHEP & PSO+DL face Non-hybrids easier to
Heuristics lack adaptability; . . implement; hybrids
TN o complexity in setup, higher
Limitations optimization needs parameter . more powerful but
. L runtime cost, and reduced
tuning; ML lacks explainability. harder to
transparency. . .
operationalize.
i i o excelled In improving maintainability,
Summary Justification HSHEP excelled in improving maintainability

By evaluating across multiple performance metrics
LOC,Maintainability Index, Cohesion (LCOM), Coupling
(CBO), Cyclomatic Complexity, Defect Density, Code Smell
Resolution Rate, and Cost Estimation Error (MAPE) the
proposed HSHEP and HTSA-SHO approaches consistently

outperform non-hybrid heuristic, optimization, and ML

methods.
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reducing coupling, and handling scalability.

e HTSA-SHO provided stronger sequencing stability,

lower cost estimation errors, and efficient

convergence.

e Statistical significance (p < 0.001 in MAPE

reduction) validates that the improvements are not

coincidental but methodologically robust.
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Thus, Non-Hybrid Methods i.e. Heuristics and op-
timization provide incremental improvements but are limit-
ed in scalability and adaptability. Machine learning im-
proves smell detection but lacks transparency but in Hybrid
Approaches [19]. By integrating Spotted Hyena Optimizer
+ Emperor Penguin Optimizer (HSHEP) and PSO + DL se-
quencing, these works demonstrate substantial maintainabil-
ity improvements (40 %-+), scalability to industrial projects,

and statistically validated error reduction (~15%).

Conclusion

This study investigated effective techniques for
software refactoring sequencing, focusing on optimization--
driven approaches to improve maintainability, reduce com-
plexity, and manage technical debt in object-oriented sys-
tems. While traditional heuristic and machine learn-
ing-based methods demonstrated incremental improve-
ments in detection accuracy and effort reduction, they re-
mained limited in scalability and robustness when applied

to large-scale software projects.

The proposed optimization-based sequencing
strategies demonstrated significant performance gains
across multiple quality attributes. Using empirical valida-

tion and standard software metrics:

e Maintainability Index (MI) improved by ~42%

compared to baseline heuristic methods.

¢ Cohesion (LCOM) improved by 34%, and Coupling
between Objects (CBO) reduced by 28%, indicating

stronger modular design.

e Cyclomatic Complexity (CC) was reduced by

25-27%, reflecting simplified control structures.

e Code Smell Resolution Rate exceeded 85%,
outperforming non-hybrid optimization and ML-

only approaches.

o Cost Estimation Accuracy improved substantially,
with the Mean Absolute Percentage Error (MAPE)
reduced from 24.8% (traditional PSO) to 9.7%, a
statistically significant improvement (p < 0.001).

o Effort Reduction in sequencing reached ~46%,
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supporting practical applicability in maintenance

workflows.

The comparative evaluation against existing non-
hybrid approaches (heuristics, NSGA-II, GA, ML-based
models) highlights that the proposed optimization-based se-
quencing strategies consistently outperform state-of-the-art
techniques in terms of accuracy, scalability, and efficiency.
In conclusion, this work justifies that optimization-driven
sequencing models are effective, validated, and scalable solu-
tions for improving maintainability and sustainability of
evolving software systems. Future research may further en-
hance these methods through explainable AI, graph-based
learning, and adaptive sequencing frameworks, thereby in-
creasing transparency, trust, and applicability in real-world

industrial environments.

Future Directions

e Incorporating explainable AI in ML-based

sequencing.

e Developing real-time refactoring assistants

integrated within IDEs.

e Expanding empirical validation across industrial-

scale projects.

By refining these techniques, refactoring sequenc-
ing can evolve into a mature discipline supporting sustain-

able software engineering practices.
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