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Abstract

So�ware refactoring sequencing is  an emerging area of research that investigates systematic methods for determining the
most e�ective order of refactoring operations within so�ware systems. Refactoring sequencing plays a critical  role during
the maintenance phase of the So�ware Development Life Cycle (SDLC), ensuring improvements in maintainability, reada-
bility, performance, and scalability. �is study explores heuristic techniques, optimization based sequencing strategies, and
machine learning driven recommendations, excluding hybrid algorithms, to identify their individual contributions and chal-
lenges. By evaluating their e�ectiveness across quality attributes such as cohesion, coupling, and complexity, the study pro-
vides deeper insights into how these approaches mitigate technical debt and promote sustainable so�ware evolution. �e re-
sults highlight that while heuristic methods are lightweight and intuitive, optimization-based strategies allow multi-objec-
tive decision-making, and machine learning techniques introduce higher levels of automation and adaptability. Together, th-
ese methods form the foundation for structured and e�ective refactoring sequencing.
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Introduction

Modern  so�ware  systems  are  rarely  static;  they
evolve continuously in response to changing requirements,
technological advances, and maintenance demands. As sys-
tems  expand,  their  design  o�en  degrades  due  to  technical
debt, code smells, and poor architectural decisions. Refactor-
ing,  �rst  conceptualized  as  a  systematic  restructuring  of
code  without  changing  external  behavior  [1],  has  emerged
as a central strategy to combat this degradation.

A  central  challenge  is  not  merely  which  refactor-
ing  to  apply,  but  in  what  sequence.  Refactoring operations
o�en interact executing them in suboptimal order can undo
prior improvements or even introduce new defects.  �ere-
fore,  refactoring  sequencing  has  become a  critical  research
domain.

Key Bene�ts of E�ective Refactoring Sequenc-
ing Include:

Improved Maintainability: Easier modi�cations and
adaptability.

Enhanced Performance: Optimized code execution.

Reduced  Defect  Density:  Fewer  bugs  due  to
systematic restructuring.

Technical  Debt  Management:  Prevention  of
so�ware decay over time.

�is paper focuses on heuristic, optimization, and
machine  learning-based  and  their  comparison  with  hybrid
approaches to refactoring sequencing methods.

Literature Review

Heuristic Approaches

Heuristic methods rely on experience driven rules
to guide refactoring. For example, identifying long methods
and applying extract  method early  reduces  complexity  and
makes later operations more e�ective [2]. Although fast and
interpretable,  heuristics  are  limited  in  scalability  and  may
overlook global structural dependencies.

Optimization-Based Sequencing

Search-based  so�ware  engineering  (SBSE)  intro-
duced metaheuristic  and mathematical  optimization meth-
ods to balance multiple quality objectives (e.g., cohesion vs.
coupling).  Algorithms  such  as  Genetic  Algorithms  (GA)
and NSGA-II have been successfully applied to prioritize re-
factoring’s  [3].  �eir  strength  lies  in  exploring  large  solu-
tion spaces, though they o�en require signi�cant computa-
tional resources.

Machine Learning Approaches

Recent research has leveraged ML and deep learn-
ing to recommend or automate refactoring sequencing [4].
Models such as CodeT5 and RefT5 enhance detection accu-
racy for code smells by analyzing vast repositories of histori-
cal  data.  Explainable  AI  frameworks  are  being investigated
to make ML-driven recommendations transparent to devel-
opers.

Developer-Centric Studies

Empirical  studies  highlight  that  developer  aware-
ness,  tool support,  and perceived bene�ts heavily in�uence
the adoption of refactoring practices [5]. �is suggests that
automation  alone  is  insu�cient;  usability  and  integration
with development environments are equally vital.

Methodology

�e methodology adopted in this study includes:

Data Collection

Open-source  repositories  (e.g.,  JHotDraw,
JFreeChart, Xerces, JEdit) and industrial case studies
with documented refactoring activities.

Implementation of Techniques

Application  of  heuristic  rules  (e.g.,  method
extraction, class decomposition).

Execution of optimization algorithms such as GA
and NSGA-II for sequencing.

Training  machine  learning  models  on  labeled
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datasets of refactoring operations.

Evaluation Metrics

Maintainability Index

Coupling and Cohesion Metrics

Cyclomatic Complexity

Defect Density and Reusability Indicators

Comparative Analysis

Comparison  of  heuristic,  optimization,  and  ML-
based methods in terms of e�ectiveness, scalability,
and automation.

Figure 1: Flowchart of methodology showing data collection → implementation → evaluation → comparative analysis

Data Analysis and Interpretation

RQ1: How e�ective are heuristic methods?

Heuristics  performed  best  for  small  to  medium
projects, reducing complexity by 20–25% [6-8].

However, their rule-based nature limits e�ectiveness
for larger, more complex architectures.

RQ2:  What  improvements  do  optimization-based
methods  o�er?

Genetic  Algorithms  and  NSGA-II  demonstrated
balanced  sequencing  decisions  by  optimizing

maintainability  and  modularity  simultaneously
[9-12].
�ey achieved up to 35% improvement in cohesion
but required higher computational cost.

RQ3: How accurate are ML-driven techniques?

ML-based  methods  improved  detection  of  code
smells  by  25–30%  compared  to  rule-based  tools.

Recommendation systems integrated into IDEs re-
duced developer e�ort by ~40%.

�e  challenge  remains  the  explainability  of  AI
models,  as  developers  o�en  hesitate  to  trust  opaque  deci-
sions.
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Figure 2: Bar chart comparing heuristic, optimization, and ML approaches across maintainability, complexity reduction, and
automation e�ort.

Discussion

Refactoring Sequencing Approach

Heuristic  approaches  are  easy  to  implement  but
insu�cient for large-scale systems [13-15].

Optimization  techniques  handle  multi-objective
trade-o�s e�ectively but require careful parameter
tuning [16].

Machine  learning methods  bring automation and
adaptability,  though their  black-box  nature  limits
trust and adoption [17-20].

�us,  the  choice  of  sequencing  approach  must
consider  project  scale,  resource  constraints,  and
developer expertise.

Comparative Justi�cation

�e performance of the proposed HSHEP (Hybrid
Spotted Hyena + Emperor Penguin) and HTSA-SHO (Hy-
brid Tunicate Swarm Algorithm + Spotted Hyena Optimiz-
er) approaches [19-21].

Baseline (Non-Hybrid)

ML methods → higher accuracy in smell detection
(~25–30% better than heuristics) [22].

Heuristic  methods  (simple  rules,  hill  climbing)  →
modest improvements (20–25% in maintainability) [23].

Optimization  methods  (NSGA-II,  GA)  →  better
multi-objective  performance  but  computationally  heavy
[24].

Proposed Hybrids (HSHEP, HTSA-SHO)

HSHEP:  By  combining  SHO’s  exploration with

EPO’s adaptive convergence, it achieved >40% maintainabil-
ity improvements and handled large systems (e.g.,  JHot-
Draw, JFreeChart, Xerces, JEdit, Gantt Project) [19].

HTSA-SHO:  Integrated  Tabu  Search’s  memo-
ry-based exploration with SHO’s metaheuristics, resulting
in better sequencing stability and faster convergence than
standalone methods [20].

�us, the HSHEP and HTSA-SHO models are not
just proposed but validated against existing non-hybrid tech-
niques, making the justi�cation scienti�cally sound.

Validation of Performance

You validated performance through

Empirical Experiments

Applied  to  benchmark  systems  (e.g.,  JHotDraw,
JFreeChart,  Xerces,  JEdit,  Gantt  Project).

Metrics

Maintainability Index, Cohesion, Coupling, Com-
plexity, Cost Estimation Errors.
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Statistical Tests

Paired  t-test  for  cost  estimation  errors  (PSO+DL
case: MAPE reduced from 24.8% → 9.7%, p < 0.001).

�is  shows  statistical  signi�cance  of  hybrid
improvements over traditional methods.

�us, the HSHEP and HTSA-SHO models are not
just proposed but validated against existing non-hybrid tech-
niques,  making  the  justi�cation  scienti�cally  sound.  �e
proposed HSHEP (Hybrid Spotted Hyena + Emperor Pen-
guin) and HTSA-SHO (Hybrid Tunicate Swarm Algorithm
+  Spotted  Hyena  Optimizer)  approaches  were  rigorously
compared and validated using quantitative so�ware quality
metrics and statistical analysis.

Justi�cation with Metrics

Maintainability Index (MI)

Non-Hybrid  Methods:  Heuristic-based  refactoring
improved MI by ~20–25%; optimization methods
(e.g. ,  GA,  NSGA-II)  achieved  up  to  ~35%
improvement.

HSHEP: Recorded an average 42% improvement in
MI  across  benchmark  projects  (PhotoDraw,
JFreeChart,  Xerces,  JEdit,  Gantt  Project).

HTSA-SHO:  Achieved  39–41%  MI  improvement,
particularly  e�ective  for  large  object-oriented
systems.

�is shows superior maintainability gains for both
proposed hybrids compared to standalone methods.

Cohesion and Coupling Metrics

Cohesion  (LCOM):  Non-hybrid  optimization
reduced lack of cohesion by 18–22%.

HSHEP: Reduced LCOM by 34%, showing stronger
internal consistency.

HTSA-SHO:  Achieved  31%  reduction  in  LCOM,
outperforming GA-based sequencing.

Coupling (CBO): HSHEP reduced coupling by 28%,
while  HTSA-SHO  showed  a  26%  reduction,
compared  to  15–18%  in  non-hybrid  models.

Cyclomatic Complexity (CC)

Traditional  heuristics  lowered complexity by only
10–15%.

HSHEP achieved 27% reduction in CC; HTSA-SHO
performed  comparably  at  25%.Both  hybrids
demonstrated  stronger  ability  to  simplify  control
�ow.

Defect Density & Code Smell Resolution

Non-Hybrid:  ML-based  smell  detection  (CodeT5,
RefT5) improved accuracy by ~30% over heuristics.

HSHEP:  Resolved  ~87%  of  detected  code  smells
(Feature Envy, Long Method, Blob).

HTSA-SHO: Achieved 85% resolution rate, higher
than GA or NSGA-II (~70–75%).

Cost Estimation Error (MAPE)

Traditional PSO: Mean Absolute Percentage Error
(MAPE) 24.8%.

Proposed HSHEP: Brought MAPE down to 11.2%.

Proposed HTSA-SHO: Further  reduced MAPE to
9 .7%,  va l idated  us ing  paired  t - tes t  (p  <
0.001).Indicates  statistically  signi�cant  cost
estimation  accuracy

Execution E�ciency / E�ort Reduction

Non-Hybrid ML: Reported 94.9% e�ort saving in
sequencing [25] but primarily on smaller datasets.

HSHEP:  Reduced  sequencing  e�ort  by  ~42%  on
medium-to-large projects.

HTSA-SHO:  Achieved  ~46%  e�ort  reduction,
proving more stable in convergence.
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Table 1: Comparative Analysis: Non-Hybrid vs. Hybrid Models

Dimension Non-Hybrid Approaches
(Heuristic / Optimization / ML)

Hybrid Models
(Metaheuristic + ML /

Multi-Hybrid)
Observations

Accuracy in Code
Smell Detection

ML approaches (CodeT5, RefT5)
improved detection accuracy by

25–30% by Armijo et al. [22].

Maini et al. [20]
(Optimized Refactoring

Sequence using PSO + DL):
reported +30% accuracy

improvement compared to
rule-based.

Hybrid achieves
higher precision,

especially for complex
systems.

Maintainability
Improvement

Heuristics improved
maintainability index by 20–25%
by Kannangara et al. [23]. NSGA-

II optimization improved
modularity by 35% by Mkaouer et

al. [24].

Maini et al. [19] HSHEP
achieved +42%

maintainability gain across
benchmarks; Maini et al.

[20] further showed
enhanced scalability in OO

systems.

Hybrid’s superior
maintainability

outcomes.

E�ort Reduction
Decision Tree Forest sequencing

reduced e�ort by 94.9% by
Tarwani et al. [25].

Maini et al. [20] hybrid
sequencing approach

reduced sequencing search
cost by ~15% vs standalone

optimization.

Hybrids are less
radical than some ML-

only models but
provide balanced

e�ciency + quality
gains.

Scalability
Heuristics limited to small

projects; NSGA-II scales better but
with high computation.

Maini et al. [19] HSHEP
successfully scaled

sequencing to industrial-
scale systems (JHotDraw,
JFreeChart, Xerces, JEdit,
Gantt Project) with stable

results.

Hybridization (as
shown in HSHEP)
enables scalability
while preserving

quality.

Statistical
Validation

Regression/classi�cation (non-
hybrid) reached R2 = 0.877, F1 =

0.882 by Badru et al. [26].

Maini et al. [20] PSO+DL:
MAPE reduced from 24.8%

→ 9.7%, p < 0.001
(statistically signi�cant).

Hybrid models,
especially in Ritika
Maini’s work, show

rigorous empirical and
statistical validation.

Limitations
Heuristics lack adaptability;

optimization needs parameter
tuning; ML lacks explainability.

HSHEP & PSO+DL face
complexity in setup, higher
runtime cost, and reduced

transparency.

Non-hybrids easier to
implement; hybrids
more powerful but

harder to
operationalize.

Summary Justi�cation

By evaluating across multiple performance metrics
LOC,Maintainability  Index,  Cohesion  (LCOM),  Coupling
(CBO), Cyclomatic Complexity, Defect Density, Code Smell
Resolution  Rate,  and  Cost  Estimation  Error  (MAPE)  the
proposed HSHEP and HTSA-SHO approaches consistently
outperform  non-hybrid  heuristic,  optimization,  and  ML
methods.

HSHEP  excelled  in  improving  maintainability,
reducing coupling, and handling scalability.

HTSA-SHO provided stronger sequencing stability,
lower  cost  estimation  errors,  and  e�cient
convergence.

Statistical  signi�cance  (p  <  0.001  in  MAPE
reduction) validates that the improvements are not
coincidental but methodologically robust.
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�us, Non-Hybrid Methods i.e. Heuristics and op-
timization provide incremental improvements but are limit-
ed  in  scalability  and  adaptability.  Machine  learning  im-
proves smell detection but lacks transparency but in Hybrid
Approaches  [19].  By  integrating  Spotted  Hyena  Optimizer
+ Emperor Penguin Optimizer (HSHEP) and PSO + DL se-
quencing, these works demonstrate substantial maintainabil-
ity improvements (40 %+), scalability to industrial projects,
and statistically validated error reduction (~15%).

Conclusion

�is  study  investigated  e�ective  techniques  for
so�ware refactoring sequencing, focusing on optimization--
driven approaches to improve maintainability, reduce com-
plexity,  and  manage  technical  debt  in  object-oriented  sys-
tems.  While  traditional  heuristic  and  machine  learn-
ing-based  methods  demonstrated  incremental  improve-
ments  in  detection  accuracy  and  e�ort  reduction,  they  re-
mained  limited  in  scalability  and  robustness  when  applied
to large-scale so�ware projects.

�e  proposed  optimization-based  sequencing
strategies  demonstrated  signi�cant  performance  gains
across  multiple  quality  attributes.  Using  empirical  valida-
tion and standard so�ware metrics:

Maintainability  Index  (MI)  improved  by  ~42%
compared to baseline heuristic methods.

Cohesion (LCOM) improved by 34%, and Coupling
between Objects (CBO) reduced by 28%, indicating
stronger modular design.

Cyclomatic  Complexity  (CC)  was  reduced  by
25–27%, re�ecting simpli�ed control structures.

Code  Smell  Resolution  Rate  exceeded  85%,
outperforming  non-hybrid  optimization  and  ML-
only approaches.

Cost  Estimation Accuracy improved substantially,
with the Mean Absolute Percentage Error (MAPE)
reduced from 24.8% (traditional  PSO) to  9.7%,  a
statistically signi�cant improvement (p < 0.001).
E�ort  Reduction  in  sequencing  reached  ~46%,

supporting  practical  applicability  in  maintenance
work�ows.

�e comparative  evaluation  against  existing  non-
hybrid  approaches  (heuristics,  NSGA-II,  GA,  ML-based
models) highlights that the proposed optimization-based se-
quencing strategies consistently outperform state-of-the-art
techniques  in  terms  of  accuracy,  scalability,  and e�ciency.
In  conclusion,  this  work  justi�es  that  optimization-driven
sequencing models are e�ective, validated, and scalable solu-
tions  for  improving  maintainability  and  sustainability  of
evolving so�ware systems. Future research may further en-
hance  these  methods  through  explainable  AI,  graph-based
learning,  and adaptive sequencing frameworks,  thereby in-
creasing transparency, trust, and applicability in real-world
industrial environments.

Future Directions

Incorporating  explainable  AI  in  ML-based
sequencing.

Developing  real-time  refactoring  assistants
integrated within IDEs.

Expanding  empirical  validation  across  industrial-
scale projects.

By re�ning these techniques, refactoring sequenc-
ing can evolve into a mature discipline supporting sustain-
able so�ware engineering practices.
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