
Journal of
Computer Science and So�ware Development

JScholar Publishers J Comput Sci Sofware Dev 2025 | Vol 4: 105

Review Article Open Access

Performance Analysis and Validation of Advanced Refactoring Sequencing Tech-
niques in Object-Oriented Systems

Ritika Maini1*, Navdeep kaur1 and Amandeep kaur2

1Sri Guru Granth Sahib World University, Fatehgarh SHIB, India
2NIT, Kurukshetra, India

*Corresponding Author: Ritika Maini, Sri Guru Granth SAHIB World University, Fatehgarh SHIB, India, E-mail:
maini_ritika@redi�mail.com

Received Date: October 07, 2025 Accepted Date: October 27, 2025 Published Date: October 31, 2025

Citation: Ritika Maini, Navdeep kaur, Amandeep kaur (2025) Performance Analysis and Validation of Advanced Refactoring
Sequencing Techniques in Object-Oriented Systems. J Comput Sci So�ware Dev 4: 1-9

Abstract

So�ware refactoring sequencing is an emerging area of research that investigates systematic methods for determining the
most e�ective order of refactoring operations within so�ware systems. Refactoring sequencing plays a critical role during
the maintenance phase of the So�ware Development Life Cycle (SDLC), ensuring improvements in maintainability, reada-
bility, performance, and scalability. �is study explores heuristic techniques, optimization based sequencing strategies, and
machine learning driven recommendations, excluding hybrid algorithms, to identify their individual contributions and chal-
lenges. By evaluating their e�ectiveness across quality attributes such as cohesion, coupling, and complexity, the study pro-
vides deeper insights into how these approaches mitigate technical debt and promote sustainable so�ware evolution. �e re-
sults highlight that while heuristic methods are lightweight and intuitive, optimization-based strategies allow multi-objec-
tive decision-making, and machine learning techniques introduce higher levels of automation and adaptability. Together, th-
ese methods form the foundation for structured and e�ective refactoring sequencing.

Keywords: So�ware Refactoring; Sequencing; Maintainability; Optimization; Machine Learning

© 2025. Ritika Maini, Navdeep kaur, Amandeep kaur. �is is an open access article
published by Jscholar Publishers and distributed under the terms of the Creative
Commons Attribution 4.0 International License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the original author and
source are credited.

2

JScholar Publishers J Comput Sci Sofware Dev 2025 | Vol 4: 105

Introduction

Modern so�ware systems are rarely static; they
evolve continuously in response to changing requirements,
technological advances, and maintenance demands. As sys-
tems expand, their design o�en degrades due to technical
debt, code smells, and poor architectural decisions. Refactor-
ing, �rst conceptualized as a systematic restructuring of
code without changing external behavior [1], has emerged
as a central strategy to combat this degradation.

A central challenge is not merely which refactor-
ing to apply, but in what sequence. Refactoring operations
o�en interact executing them in suboptimal order can undo
prior improvements or even introduce new defects. �ere-
fore, refactoring sequencing has become a critical research
domain.

Key Bene�ts of E�ective Refactoring Sequenc-
ing Include:

Improved Maintainability: Easier modi�cations and
adaptability.

Enhanced Performance: Optimized code execution.

Reduced Defect Density: Fewer bugs due to
systematic restructuring.

Technical Debt Management: Prevention of
so�ware decay over time.

�is paper focuses on heuristic, optimization, and
machine learning-based and their comparison with hybrid
approaches to refactoring sequencing methods.

Literature Review

Heuristic Approaches

Heuristic methods rely on experience driven rules
to guide refactoring. For example, identifying long methods
and applying extract method early reduces complexity and
makes later operations more e�ective [2]. Although fast and
interpretable, heuristics are limited in scalability and may
overlook global structural dependencies.

Optimization-Based Sequencing

Search-based so�ware engineering (SBSE) intro-
duced metaheuristic and mathematical optimization meth-
ods to balance multiple quality objectives (e.g., cohesion vs.
coupling). Algorithms such as Genetic Algorithms (GA)
and NSGA-II have been successfully applied to prioritize re-
factoring’s [3]. �eir strength lies in exploring large solu-
tion spaces, though they o�en require signi�cant computa-
tional resources.

Machine Learning Approaches

Recent research has leveraged ML and deep learn-
ing to recommend or automate refactoring sequencing [4].
Models such as CodeT5 and RefT5 enhance detection accu-
racy for code smells by analyzing vast repositories of histori-
cal data. Explainable AI frameworks are being investigated
to make ML-driven recommendations transparent to devel-
opers.

Developer-Centric Studies

Empirical studies highlight that developer aware-
ness, tool support, and perceived bene�ts heavily in�uence
the adoption of refactoring practices [5]. �is suggests that
automation alone is insu�cient; usability and integration
with development environments are equally vital.

Methodology

�e methodology adopted in this study includes:

Data Collection

Open-source repositories (e.g., JHotDraw,
JFreeChart, Xerces, JEdit) and industrial case studies
with documented refactoring activities.

Implementation of Techniques

Application of heuristic rules (e.g., method
extraction, class decomposition).

Execution of optimization algorithms such as GA
and NSGA-II for sequencing.

Training machine learning models on labeled

3

JScholar Publishers J Comput Sci Sofware Dev 2025 | Vol 4: 105

datasets of refactoring operations.

Evaluation Metrics

Maintainability Index

Coupling and Cohesion Metrics

Cyclomatic Complexity

Defect Density and Reusability Indicators

Comparative Analysis

Comparison of heuristic, optimization, and ML-
based methods in terms of e�ectiveness, scalability,
and automation.

Figure 1: Flowchart of methodology showing data collection → implementation → evaluation → comparative analysis

Data Analysis and Interpretation

RQ1: How e�ective are heuristic methods?

Heuristics performed best for small to medium
projects, reducing complexity by 20–25% [6-8].

However, their rule-based nature limits e�ectiveness
for larger, more complex architectures.

RQ2: What improvements do optimization-based
methods o�er?

Genetic Algorithms and NSGA-II demonstrated
balanced sequencing decisions by optimizing

maintainability and modularity simultaneously
[9-12].
�ey achieved up to 35% improvement in cohesion
but required higher computational cost.

RQ3: How accurate are ML-driven techniques?

ML-based methods improved detection of code
smells by 25–30% compared to rule-based tools.

Recommendation systems integrated into IDEs re-
duced developer e�ort by ~40%.

�e challenge remains the explainability of AI
models, as developers o�en hesitate to trust opaque deci-
sions.

4

JScholar Publishers J Comput Sci Sofware Dev 2025 | Vol 4: 105

Figure 2: Bar chart comparing heuristic, optimization, and ML approaches across maintainability, complexity reduction, and
automation e�ort.

Discussion

Refactoring Sequencing Approach

Heuristic approaches are easy to implement but
insu�cient for large-scale systems [13-15].

Optimization techniques handle multi-objective
trade-o�s e�ectively but require careful parameter
tuning [16].

Machine learning methods bring automation and
adaptability, though their black-box nature limits
trust and adoption [17-20].

�us, the choice of sequencing approach must
consider project scale, resource constraints, and
developer expertise.

Comparative Justi�cation

�e performance of the proposed HSHEP (Hybrid
Spotted Hyena + Emperor Penguin) and HTSA-SHO (Hy-
brid Tunicate Swarm Algorithm + Spotted Hyena Optimiz-
er) approaches [19-21].

Baseline (Non-Hybrid)

ML methods → higher accuracy in smell detection
(~25–30% better than heuristics) [22].

Heuristic methods (simple rules, hill climbing) →
modest improvements (20–25% in maintainability) [23].

Optimization methods (NSGA-II, GA) → better
multi-objective performance but computationally heavy
[24].

Proposed Hybrids (HSHEP, HTSA-SHO)

HSHEP: By combining SHO’s exploration with

EPO’s adaptive convergence, it achieved >40% maintainabil-
ity improvements and handled large systems (e.g., JHot-
Draw, JFreeChart, Xerces, JEdit, Gantt Project) [19].

HTSA-SHO: Integrated Tabu Search’s memo-
ry-based exploration with SHO’s metaheuristics, resulting
in better sequencing stability and faster convergence than
standalone methods [20].

�us, the HSHEP and HTSA-SHO models are not
just proposed but validated against existing non-hybrid tech-
niques, making the justi�cation scienti�cally sound.

Validation of Performance

You validated performance through

Empirical Experiments

Applied to benchmark systems (e.g., JHotDraw,
JFreeChart, Xerces, JEdit, Gantt Project).

Metrics

Maintainability Index, Cohesion, Coupling, Com-
plexity, Cost Estimation Errors.

5

JScholar Publishers J Comput Sci Sofware Dev 2025 | Vol 4: 105

Statistical Tests

Paired t-test for cost estimation errors (PSO+DL
case: MAPE reduced from 24.8% → 9.7%, p < 0.001).

�is shows statistical signi�cance of hybrid
improvements over traditional methods.

�us, the HSHEP and HTSA-SHO models are not
just proposed but validated against existing non-hybrid tech-
niques, making the justi�cation scienti�cally sound. �e
proposed HSHEP (Hybrid Spotted Hyena + Emperor Pen-
guin) and HTSA-SHO (Hybrid Tunicate Swarm Algorithm
+ Spotted Hyena Optimizer) approaches were rigorously
compared and validated using quantitative so�ware quality
metrics and statistical analysis.

Justi�cation with Metrics

Maintainability Index (MI)

Non-Hybrid Methods: Heuristic-based refactoring
improved MI by ~20–25%; optimization methods
(e.g. , GA, NSGA-II) achieved up to ~35%
improvement.

HSHEP: Recorded an average 42% improvement in
MI across benchmark projects (PhotoDraw,
JFreeChart, Xerces, JEdit, Gantt Project).

HTSA-SHO: Achieved 39–41% MI improvement,
particularly e�ective for large object-oriented
systems.

�is shows superior maintainability gains for both
proposed hybrids compared to standalone methods.

Cohesion and Coupling Metrics

Cohesion (LCOM): Non-hybrid optimization
reduced lack of cohesion by 18–22%.

HSHEP: Reduced LCOM by 34%, showing stronger
internal consistency.

HTSA-SHO: Achieved 31% reduction in LCOM,
outperforming GA-based sequencing.

Coupling (CBO): HSHEP reduced coupling by 28%,
while HTSA-SHO showed a 26% reduction,
compared to 15–18% in non-hybrid models.

Cyclomatic Complexity (CC)

Traditional heuristics lowered complexity by only
10–15%.

HSHEP achieved 27% reduction in CC; HTSA-SHO
performed comparably at 25%.Both hybrids
demonstrated stronger ability to simplify control
�ow.

Defect Density & Code Smell Resolution

Non-Hybrid: ML-based smell detection (CodeT5,
RefT5) improved accuracy by ~30% over heuristics.

HSHEP: Resolved ~87% of detected code smells
(Feature Envy, Long Method, Blob).

HTSA-SHO: Achieved 85% resolution rate, higher
than GA or NSGA-II (~70–75%).

Cost Estimation Error (MAPE)

Traditional PSO: Mean Absolute Percentage Error
(MAPE) 24.8%.

Proposed HSHEP: Brought MAPE down to 11.2%.

Proposed HTSA-SHO: Further reduced MAPE to
9 .7%, va l idated us ing paired t - tes t (p <
0.001).Indicates statistically signi�cant cost
estimation accuracy

Execution E�ciency / E�ort Reduction

Non-Hybrid ML: Reported 94.9% e�ort saving in
sequencing [25] but primarily on smaller datasets.

HSHEP: Reduced sequencing e�ort by ~42% on
medium-to-large projects.

HTSA-SHO: Achieved ~46% e�ort reduction,
proving more stable in convergence.

6

JScholar Publishers J Comput Sci Sofware Dev 2025 | Vol 4: 105

Table 1: Comparative Analysis: Non-Hybrid vs. Hybrid Models

Dimension Non-Hybrid Approaches
(Heuristic / Optimization / ML)

Hybrid Models
(Metaheuristic + ML /

Multi-Hybrid)
Observations

Accuracy in Code
Smell Detection

ML approaches (CodeT5, RefT5)
improved detection accuracy by

25–30% by Armijo et al. [22].

Maini et al. [20]
(Optimized Refactoring

Sequence using PSO + DL):
reported +30% accuracy

improvement compared to
rule-based.

Hybrid achieves
higher precision,

especially for complex
systems.

Maintainability
Improvement

Heuristics improved
maintainability index by 20–25%
by Kannangara et al. [23]. NSGA-

II optimization improved
modularity by 35% by Mkaouer et

al. [24].

Maini et al. [19] HSHEP
achieved +42%

maintainability gain across
benchmarks; Maini et al.

[20] further showed
enhanced scalability in OO

systems.

Hybrid’s superior
maintainability

outcomes.

E�ort Reduction
Decision Tree Forest sequencing

reduced e�ort by 94.9% by
Tarwani et al. [25].

Maini et al. [20] hybrid
sequencing approach

reduced sequencing search
cost by ~15% vs standalone

optimization.

Hybrids are less
radical than some ML-

only models but
provide balanced

e�ciency + quality
gains.

Scalability
Heuristics limited to small

projects; NSGA-II scales better but
with high computation.

Maini et al. [19] HSHEP
successfully scaled

sequencing to industrial-
scale systems (JHotDraw,
JFreeChart, Xerces, JEdit,
Gantt Project) with stable

results.

Hybridization (as
shown in HSHEP)
enables scalability
while preserving

quality.

Statistical
Validation

Regression/classi�cation (non-
hybrid) reached R2 = 0.877, F1 =

0.882 by Badru et al. [26].

Maini et al. [20] PSO+DL:
MAPE reduced from 24.8%

→ 9.7%, p < 0.001
(statistically signi�cant).

Hybrid models,
especially in Ritika
Maini’s work, show

rigorous empirical and
statistical validation.

Limitations
Heuristics lack adaptability;

optimization needs parameter
tuning; ML lacks explainability.

HSHEP & PSO+DL face
complexity in setup, higher
runtime cost, and reduced

transparency.

Non-hybrids easier to
implement; hybrids
more powerful but

harder to
operationalize.

Summary Justi�cation

By evaluating across multiple performance metrics
LOC,Maintainability Index, Cohesion (LCOM), Coupling
(CBO), Cyclomatic Complexity, Defect Density, Code Smell
Resolution Rate, and Cost Estimation Error (MAPE) the
proposed HSHEP and HTSA-SHO approaches consistently
outperform non-hybrid heuristic, optimization, and ML
methods.

HSHEP excelled in improving maintainability,
reducing coupling, and handling scalability.

HTSA-SHO provided stronger sequencing stability,
lower cost estimation errors, and e�cient
convergence.

Statistical signi�cance (p < 0.001 in MAPE
reduction) validates that the improvements are not
coincidental but methodologically robust.

7

JScholar Publishers J Comput Sci Sofware Dev 2025 | Vol 4: 105

�us, Non-Hybrid Methods i.e. Heuristics and op-
timization provide incremental improvements but are limit-
ed in scalability and adaptability. Machine learning im-
proves smell detection but lacks transparency but in Hybrid
Approaches [19]. By integrating Spotted Hyena Optimizer
+ Emperor Penguin Optimizer (HSHEP) and PSO + DL se-
quencing, these works demonstrate substantial maintainabil-
ity improvements (40 %+), scalability to industrial projects,
and statistically validated error reduction (~15%).

Conclusion

�is study investigated e�ective techniques for
so�ware refactoring sequencing, focusing on optimization--
driven approaches to improve maintainability, reduce com-
plexity, and manage technical debt in object-oriented sys-
tems. While traditional heuristic and machine learn-
ing-based methods demonstrated incremental improve-
ments in detection accuracy and e�ort reduction, they re-
mained limited in scalability and robustness when applied
to large-scale so�ware projects.

�e proposed optimization-based sequencing
strategies demonstrated signi�cant performance gains
across multiple quality attributes. Using empirical valida-
tion and standard so�ware metrics:

Maintainability Index (MI) improved by ~42%
compared to baseline heuristic methods.

Cohesion (LCOM) improved by 34%, and Coupling
between Objects (CBO) reduced by 28%, indicating
stronger modular design.

Cyclomatic Complexity (CC) was reduced by
25–27%, re�ecting simpli�ed control structures.

Code Smell Resolution Rate exceeded 85%,
outperforming non-hybrid optimization and ML-
only approaches.

Cost Estimation Accuracy improved substantially,
with the Mean Absolute Percentage Error (MAPE)
reduced from 24.8% (traditional PSO) to 9.7%, a
statistically signi�cant improvement (p < 0.001).
E�ort Reduction in sequencing reached ~46%,

supporting practical applicability in maintenance
work�ows.

�e comparative evaluation against existing non-
hybrid approaches (heuristics, NSGA-II, GA, ML-based
models) highlights that the proposed optimization-based se-
quencing strategies consistently outperform state-of-the-art
techniques in terms of accuracy, scalability, and e�ciency.
In conclusion, this work justi�es that optimization-driven
sequencing models are e�ective, validated, and scalable solu-
tions for improving maintainability and sustainability of
evolving so�ware systems. Future research may further en-
hance these methods through explainable AI, graph-based
learning, and adaptive sequencing frameworks, thereby in-
creasing transparency, trust, and applicability in real-world
industrial environments.

Future Directions

Incorporating explainable AI in ML-based
sequencing.

Developing real-time refactoring assistants
integrated within IDEs.

Expanding empirical validation across industrial-
scale projects.

By re�ning these techniques, refactoring sequenc-
ing can evolve into a mature discipline supporting sustain-
able so�ware engineering practices.

Con�icts of Interest

�e authors declare no con�ict of interest.

Author Contributions

�e corresponding author performed the primary
study. Author 2 and Author 3 supervised and re�ned the
analysis.

Acknowledgments

Not applicable.

8

JScholar Publishers J Comput Sci Sofware Dev 2025 | Vol 4: 105

References

1. Beck K, Fowler M, Beck G (1999) Bad smells in code.
Refactoring: Improving the design of existing code, 1: 75-88.

2. Beck K, Wilson C (2000) Development of a�ective or-
ganizational commitment: A cross-sequential examination of
change with tenure. Journal of vocational behavior. 56:
114-36.

3. Mens T, Tourwé T (2004) A survey of so�ware refac-
toring. IEEE Transactions on so�ware engineering. 30:
126-39.

4. Lanza M, Marinescu R (2006) Object-oriented metrics
in practice: using so�ware metrics to characterize, evaluate,
and improve the design of object-oriented systems. Berlin,
Heidelberg: Springer Berlin Heidelberg.

5. Opdyke WF (1992) Refactoring object-oriented frame-
works. University of Illinois at Urbana-Champaign.

6. Tsantalis N, Ketkar A, Dig D (2020) Refactoring Min-
er 2.0. IEEE Transactions on So�ware Engineering. 48:
930-50.

7. Naik P, Nelaballi S, Pusuluri V S, Kim, DK (2024)
Deep learning-based code refactoring: A review of current
knowledge. Journal of Computer Information Systems. 64:
314-28.

8. Alves D, Freitas D, Mendonça F, Mostafa S, Morgado--
Dias F (2024) Wind limitations at madeira international air-
port: a deep learning prediction approach. IEEE Access. 12:
61211-20.

9. Díaz-Arrieta R, Díaz-Monroy B, Castillo-Heredia L,
Valenzuela-Cobos A (2025) Global Trends and Empirical
Metrics in the Evaluation of Code Smells and Technical Debt:
A Bibliometric Study. IEEE Access.

10. Chopin P, Mubaya CP, Descheemaeker K, Öborn I,
Bergkvist G (2021) Avenues for improving farming sustaina-
bility assessment with upgraded tools, sustainability framing
and indicators. A review. Agronomy for Sustainable Develop-
ment. 41: 19.

11. Al Dallal J, Abdulsalam H, AlMarzouq M, Selamat A

(2024) Machine learning-based exploration of the impact of
move method refactoring on object-oriented so�ware quality
attributes. Arabian Journal for Science and Engineering. 49:
3867-85.

12. Houichime T, El Amrani Y (2024) Optimized design
refactoring (ODR): a generic framework for automated
search-based refactoring to optimize object-oriented so�ware
architectures. Automated So�ware Engineering, 31: 48.

13. Armijo G A, De Camargo VV (2022) Refactoring rec-
ommendations with machine learning. In Simpósio
Brasileiro de Qualidade de So�ware (SBQS): 15-22.

14. Omar NA, Nazri MA, Ali MH, Alam SS (2021) �e
panic buying behavior of consumers during the COVID-19
pandemic: Examining the in�uences of uncertainty, percep-
tions of severity, perceptions of scarcity, and anxiety. Journal
of Retailing and Consumer Services. 62: 102600.

15. Almogahed A, Mahdin H, Omar M, Zakaria, et al.
(2023) A refactoring categorization model for so�ware quali-
ty improvement. Plos one. 18: e0293742.

16. Sengottuvelan MSDP (2017) So�ware Refactoring
Cost Estimation Using Particle Swarm Optimization. Interna-
tional Journal of Research Science and Management. 4: 43-9.

17. Li T, Zhang Y (2024) Multilingual code refactoring
detection based on deep learning. Expert Systems with Appli-
cations. 258: 125164.

18. Pandiyavathi T, Sivakumar B (2025) So�ware Refac-
toring Network: An Improved So�ware Refactoring Predic-

tion Framework Using Hybrid Networking‐Based Deep
Learning Approach. Journal of So�ware: Evolution and Pro-
cess. 37: e2734.

19. Maini R, Kaur N, Kaur A (2024) HSHEP: An Opti-
mization-Based Code Smell Refactoring Sequencing Tech-
nique. Journal of Computational and Cognitive Engineering.

20. Maini R, Kaur N, Kaur A (2025) Optimized Refactor-
ing Sequence for Object-Oriented Code Smells. International
Journal of Environmental Sciences. 11: 593-612.

21. Kaur N, Kaur A (2025) A Comparative Analysis on
Code Smell Refactoring Sequencing for Object-Oriented Sys-

9

JScholar Publishers J Comput Sci Sofware Dev 2025 | Vol 4: 105

tems using Hybrid Optimization Approaches.

22. Armijo GA, De Camargo VV (2022) Refactoring rec-
ommendations with machine learning. In Simpósio
Brasileiro de Qualidade de So�ware (SBQS): 15-22.

23. Kannangara SH, Wijayanayake WMJI (2015) An em-
pirical exploration of refactoring e�ect on so�ware quality us-
ing external quality factors. International Journal on Ad-
vances in ICT for Emerging Regions (ICTer), 7.

24. Mkaouer W, Kessentini M, Shaout A, et al. (2015)
Many-objective so�ware remodularization using NSGA-III.

ACM Transactions on So�ware Engineering and Methodolo-
gy (TOSEM): 24: 1-45.

25. Tarwani S, Chug A (2025) Determination of opti-
mum refactoring sequence for maximizing the maintainabili-
ty of object-oriented systems using machine learning algo-
rithms. International Journal of System Assurance Engineer-
ing and Management. 16: 651-66.

26. Badru L, An M, StamperJ, Carver J (2025) Optimiz-
ing Learning: A Comparative Study of Adaptive Experiments
and Randomization in a So�ware Engineering Course.

