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Abstract

Transporter proteins classified into the solute carrier (SLC) transporter superfamily are essential for import of nutrients for 
cell survival in organisms. In the last two decades, compelling evidence has accumulated that SLC transporters interact with 
clinically important anticancer agents and contribute to their pharmacokinetics, particularly the biopharmaceutical pro-
cesses of absorption, elimination and distribution. Furthermore, many SLC transporters have been shown to be differentially 
upregulated in cancer cells, and this may represent an adaptive response to altered nutritional requirements. Thus, it is likely 
to utilize them as carrier for efficient drug delivery as well as pharmacological target to shut off the essential nutrients for 
cell growth of malignant tumors. This short review will introduce organic anion transporting polypeptides which recognize 
endo- and exogenous organic anionic compounds and recent findings about their upregulation in cancer cells. Besides, 
OATP-mediated sulfate conjugates of steroid hormone may contribute to cell survival and adapted growth under hormone-
depleted conditions. Better understandings of pathophysiological role of OATPs likely provide key information to overcome 
hormone-refractory breast and prostate tumors.

©2013 The Authors. Published by the JScholar under the terms of the Crea-
tive Commons Attribution License http://creativecommons.org/licenses/
by/3.0/, which permits unrestricted use, provided the original author and 
source are credited.

Introduction
Membrane transporter proteins encoded by a number of gene 
families may play important role in cell survival because they 
are essential for import of key nutrients, which is hydrophilic 
and impermeable to plasma membranes by itself, including 
glucose and amino acids. It is collectively known that many 
influx transporters classified into solute carrier transporter 
(SLC) superfamily are upregulated in malignant tumors, al-
though their physiological relevance has to be determined. 

For instances, enhanced expression of glucose transporter 
GLUT1/SLC2A1 in cancer cells is a molecular target for 
cell entry of the most common PET imaging agent in clini-
cal use, FDG (2-[fluorine-18]-fluoro-2-deoxy-D-glucose), 
allowing to diagnose where malignant tumors are located 
[1,2]. Besides, several transporter proteins for amino acids 
such as leucine and glutamine have been well documented 
to be upregulated in many types of cancer cells, [3,4] show-
ing their critical role in nutrient signaling to mTOR and 
cell growth [5]. In addition to amino acid transporter, we 
have shown that enhanced activity of peptide transport in 
cancer cells [6,7]. Thus, differential upregulation of influx 
transporter could be utilized not only to efficiently deliver 
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their substrate drug with anti-tumor activity [3,7] or diagnos-
tic markers [4,8,9], but also to shut off nutrient essential for 
cell growth; therefore, they can be promising target for a new 
chemotherapy. In this short review, we introduce our recent 
progresses regarding pathophysiological role of enhanced or-
ganic anion transporting polypeptides, OATPs, in cell prolif-
eration of hormone-dependent breast and prostate cancers, 
implying pharmacological intervention of OATPs may con-
tribute to efficient eradication of cancer cells.

OATPs
Organic Anion-Transporting Polypeptides (OATPs) are cur-
rently classified into the SLCO family consisting of 12 indi-
vidual members, which have been basically characterized 
capable of transporting wide range of organic anionic com-
pounds [10,11]. Human cDNAs of OATP1A2, 2B1, 1B1, 3A1 
and 4A1 were originally identified in our laboratory [12] and 
roles of OATP2B1, 1B1 and 1A2 among those in drug pharma-
cokinetics and disposition have been well established by many 
researchers [11,12]. Members of this family generally medi-
ate Na+-independent transport of amphipathic organic anion 
compounds and their substrates include bile salts, steroid 
conjugates, thyroid hormones and oligopeptides [11] as well 
as numerous drugs including major anticancer agents such as 
methotrexate[13], paclitaxel [14], SN-38 [15], and decetaxel 
[16]. Recent progresses about OATP family members in drug 
metabolism and disposition were reviewed in [17,18] with 
summarized list of their substrates. Nowadays, it becomes 
convincing that expression of OATP molecules are enhanced 
in many types of cancer cells; however, there is no established 
rationale why they are over-expressed and how they contrib-
ute to cell growth in malignant tumors.

Enhanced Expression in OATPs in Cancer Cells
OATP1B3 is one the most studied OATPs in cancer cells, and 
has been documented its enhanced expression in gastric, colo-
rectal, pancreatic and breast cancer, but not hepatocellular 
carcinomas [13,19]. Lee et al [20] detected OATP1B3 protein 
expression in 75 out of 93 patient-derived colon adenocar-
cinomas (81%) and no immunostaining in normal samples, 
and more interestingly OATP1B3 exhibited antiapoptotic ef-
fect, providing a survival advantage by altering p53-dependent 
pathways [20], although substances transported by OATP1B3 
was not identified in relation to the effect in the research. They 
later found that colon cancer cells express truncated form of 
OATP1B3 with limited transport activity because of missing 
the first 28 amino acids [21]. Independently, similar observa-
tion was made in cancer-type isoform of OATP1B3 mRNA 
that is expressed in colon and lung cancer cells. Since it was 
described to lack 47 amino acids at N-terminus, it may not be 
identical to the former one [22]. Thus, differences in expres-
sion and function may provide a clue to understand to clini-
cal significance of OATP1B3 expression in cancer. Collectively 
OATP1B3 recognizes and transports major anticancer agents; 
therefore, such differential expression of OATP1B3 may de-
termine their efficacy in chemotherapy, thereby resulting in 
providing a clinical benefit. 

In addition to OATP1B3, other OATPs are also known to be 
highly expressed in cancer cells. A recent study with patient-
derived prostate tumor specimens indicates that mRNA ex-
pression of six SLCO genes, including SLCO1B3 and 2B1, was 
enhanced several-fold in castration resistant prostate cancer 
metastases, compared to untreated prostate cancer, implying 
their association with prostate cancer-specific motility [23]. 
Previous research suggests OATP1B3 is involved in transport 
of testosterone [24].  Overall survival of patients with prostate 
cancer in response to ADT therapy is affected by genetic vari-
ants of SLCO2B1 and SLCO1B3. Therefore, OATP may help 
prostate cancer cells to increase gonadal androgen availability 
[25]. Many groups including us have also implied possibil-
ity of overexpression of OATP2A1, OATP3A1, OATP4A1, 
OATP5A1, and OATP4C1 in breast cancer cell lines, includ-
ing MCF-7 and T-47D cellsv [26-28].  OATP1A2 was shown to 
be upregulated in neoplastic breast tissues obtained from pa-
tients [29]. Furthermore, remarkable expression of OATP1A2 
and 2B1 was reported in patient-derived human gliomas [30]. 
Considering the wide spectrum of substrate specificity of these 
transporters, these observations suggest that the transporters 
are one of determinants of efficacy of their substrate anti-can-
cer agents. 

Role of OATPs in Hormone Dependent Cancer 
Cells
Breast cancer: It is known that steroid sulfatase (STS) activity 
is often detected in breast cancer cells at a considerably high-
er level than aromatase. STS catalyzes a hydrolysis of sulfate 
conjugates of steroid hormone to their unconjugated form; 
therefore, inactive estrone 3 sulfate (E3S) can be converted to 
estrone and then eventually used to generate biologically active 
estrogen by breast cancer cells, more likely, under estradiol-
depleted conditions such as post-menopausal women. Since 
OATPs efficiently facilitate cell entry of hydrophilic E3S, they 
may contribute to breast tumor progression in cooperation 
with STS. This hypothesis is tested by feeding hormone-re-
sponsive breast cancer cells with E3S to determine if E3S stim-
ulates their growth. A significant increase in MCF-7 [26] and 
T-47D [27] cell growth was observed. Furthermore, we have 
recently shown that OATP1B3 is differentially upregulated in 
a sub-population of MCF-7 cells, suggesting that OATP1B3 
serves as E3S transporter to allow breast cancer to survive 
under depletion of active estrogen such as estradiol [31]. This 
notion is also supported by enhanced STS expression corre-
lated with increasing grade of breast tumors in 120 clinical 
specimens [32]. Increased expression of OATP1A2, which can 
transport E3S, mediated by PXR in breast tumor tissues fed 
with E3S supports this as well [17,9]. These observations sug-
gest that OATPs at least in part contributes to tumor growth 
by regulating hormone dependency providing an adopted cell 
survival of breast cancer cells. Although it remains necessary 
to clarify the contributions of these OATPs to tumor growth, it 
is conceivable that developing a potent OATPs inhibitor with 
high affinity kills efficiently hormone refractory breast cancer 
that acquired by in treatment with aromatase inhibitors such as 
anastrozole and letroxole.
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Prostate cancer: In human prostate cancer, gonadal androgens 
is critical for protein synthesis and cell survival [33]. Endocrine 
therapy that removes gonadal testosterone or antagonizes an-
drogen receptors is currently a mainstream to treat prostate 
cancer. Although this Androgen Deprivation Therapy (ADT) 
is efficient, the disease may progress to the stage of Castration-
Resistant Prostate Cancer (CRPC). Once CRPC is developed, 
it no longer responds to ADT. Since CRPC tumor progression 
is still considered to associate with enhanced androgen recep-
tor (AR) function [34-36], residual androgen availability, e.g. 
adrenocortical androgen, may be involved in the progression. 
In addition to E3S, OATPs can translocate dehydroepiandros-
terone sulfate (DHEAS), [11,37,38] which is a thousand fold 
more abundant than testosterone in human serum [39] and is 
basically unchanged by ADT. DHEAS is hydrolyzed to DHEA 
by STS [40] and then can further be converted to androstenedi-
one, a weak androgen in prostate cancer [41], thereby resulting 
in stimulation of AR function (Figure 1), [42]. We have stud-
ied role of OATPs in an experimental CRPC cell culture model 
and recently reported OATP-mediated DHEAS is important 
for cell survival of prostate cancer [43]. Cell growth of AR-
positive LNCaP cells was stimulated with DHEAS (Figure 2A) 
and the stimulation was abolished by an STS inhibitor, STX64. 
mRNA expression of various OATP genes were up regulated 
in LNCaP and 22Rv1 cells under androgen-depleted condi-
tions [43]. Because OATP1A2 mRNA expression increased 
most prominently among those genes in LNCaP cells grown 
in androgen-depleted medium, LNCaP cells with OATP1A2 
gene being silenced were established and designated KD16 
and KD34. In both KD16 and 34 cells, the DHEAS-induced 
cell growth was not observed, compared to the control C3 and 
C9 cells (Figure 2B), [43]. Our results suggest that enhanced 
OATP1A2 expression is associated with adaptive cell growth 

Figure 1: Hypothesized role of OATPs in cell survival in prostate cancer 
cells under gonadal androgen depletion condition

Testosterone plays a role in cell growth and proliferation of prostate cancer 
cells and crosses the plasma membranes by simple diffusion by itself. Tes-
tosterone is converted to dihydrotestosterone (DHT) by 5α-reductase (5αR), 
and then binds to androgen receptor (AR). DHT-bound AR homodimerizes, 
enters nuclear and regulates gene expression so that it proceeds cell growth 
and releases PSA. Under the condition where testosterone is deprived of, cell 
entry of abundant plasma DHEAS may be facilitated by enhanced OATPs and 
DHEAS can be converted to DHEA, a weak androgen, by steroid sulfatase 
(STS), whose expression is not affected by availability of androgens. Since 
DHEA is converted to testosterone by multiple enzymatic reactions, handling 
of DHEAS by interplay of OATPs and STS may impart vulnerable prostate 
cancer cells an alternative source of androgens.

of prostate cancer cells under androgen-depleted conditions. 
Thus, OATPs including OATP1A2 may play an essential role 
in rescuing prostate cancer cells from shortage of androgen 
such as testosterone by feeding DHEAS and utilizing it as a 
source of androgen in interplay of STS. This provides a new 
rationale to complement current endocrine therapy in com-
bination use of an efficient inhibitor for OATPs if developed.

Figure 2: DHEAS-induced cell proliferation and impact of OATP1A2-me-
diated DHEAS transport on proliferation of LNCaP cells.

(A) Growth of LNCaP cells was monitored by means of SRB assay for up to 7 
days. LNCaP cells cultured in RPMI1640 with 10% CSS for 7 days were seeded 
at 8,000 cells each in the presence or absence of androgen. Each bar represents 
the mean ± S.E. (n=6), and * indicates a significant difference from the control 
(p < 0.05) by Student’s t-test. (B) Stimulatory effect of DHEAS on growth of 
OATP1A2-knockdown (open) and control cells (closed) in sulforhodamine 
B assay. Cells were plated at 8,000 cells in each well. The ratio of cell growth 
to that without DHEAS (5 μM) was calculated for control C3 (circle) and C9 
(square), and OATP1A2-knocking-down KD16 (circle) and KD34 (square) 
each day. Each value is the mean of 7 or 8 individual results with S.E. (n=4). 
These data was remade from originally reported by the authors (Ref.43). 

Conclusion 
There is compelling evidence that SLC transporters are upreg-
ulated in cancer cells on their demand. Among those, based 
on their nature, OATPs may be important players for regulat-
ing or adjusting hormone availability in hormone-dependent 
cancer cells. Although it is hard to exactly identify substances 
imported by OATPs to cancer cells, supplying sulfate conju-
gates of steroid hormone via OATPs allows breast and prostate 
cancer cells to use them as alternative source of active steroid 
hormones.
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