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Abstract

Introduction: Glioma is one of the most prevalent tumors in the central nervous system and has been classified into low--
grade glioma (LGG) and glioblastoma (GBM). Ferroptosis is a form of iron-dependent programmed cell death. The objec-
tive of this study is to construct a survival status prediction model using ferroptosis-related genes for patients with LGG and
GBM.

Methods: RNA-seq data and clinical information pertaining to patients with gliomas were collected from TCGA. Predictive
models were constructed based on selected specifically expressed IncRNAs and mRNAs in GBM and LGG that demonstrat-
ed a high degree of correlation with ferroptosis genes. To assess the performance of the prediction models, we examined the

areas under the curve (AUC). In order to achieve a balanced dataset, we applied Random Oversampling Examples (ROSE).

Results: A comparison of the expression of 59 ferroptosis-related genes in LGG and GBM revealed a predominance of high-
ly expressed gene transcripts in LGG, as compared to GBM. The results of our enrichment and pathway analyses revealed
notable differences in the functions and pathways of exclusively expressed ferroptosis-related IncRNAs and mRNAs in LGG
and GBM. XGBoost and random forest were employed to forecast the survival status of glioma patients based on the top 20
IncRNAs and mRNAs selected from elastic net. Upon evaluating model performance using AUC, we observed that XG-
Boost exhibited superior performance in predicting survival outcomes for patients with LGG and GBM. Furthermore, we
observed a notable improvement in model performance for XGBoost following ROSE in the GBM cohort, while this was

less pronounced in the LGG subgroup.

©2024 The Authors. Published by the JScholar under the terms of the Crea-tive Com-
mons Attribution License http://creativecommons.org/licenses/by/3.0/, which per-

mits unrestricted use, provided the original author and source are credited.
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Conclusion: We constructed a survival status prediction model for patients with LGG and GBM. Furthermore, with the aid
of elastic net and Cox regression, we were able to identify several survival ferroptosis-related mRNAs in GBM and LGG, re-

spectively. These potential biomarkers warrant further research for the purpose of validating their prognostic value.
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CDF: cumulative density function; CNS: central nervous system; GBM: glioblastoma; GTEx: Genotype-Tissue Expression;
GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes; IncRNA: long non-coding RNA; LGG: low-grade
glioma; mRNA: messenger RNA; OS: Overall Survival; PCA: Principal Component Analysis; ROSE: Random Over Sam-
pling Examples; TCGA: The Cancer Genome Atlas Program; TERT: Telomerase Reverse Transcriptase; WHO: World

Introduction

Glioma is one of the most common tumors in the
central nervous system (CNS) [1]. According to the fifth edi-
tion of the WHO classification of tumors of the CNS in
2021, several main subtypes of gliomas are as follows: astro-
cytoma is a type of lower grade glioma (LGG) with isoci-
trate dehydrogenase (IDH) mutation, which has the key di-
agnostic genes, including IDH1, IDH2, ATRX, TP53 and
CDKN2A/B. Oligodendroglioma is another type of LGG
with IDH mutation and 1p/19q-codeleted, which has the
key diagnostic genes of IDH1, IDH2, 1p/19q, telomerase rev-
erse transcriptase (TERT) promoter, capicua transcriptional
repressor (CIC), far upstream element binding protein 1
(FUBP1), and NOTCHI1. The conventional treatment for
LGG is surgical resection. Patients who underwent surgery
exhibited a superior survival outcome compared to those
who did not [2-4]. However, the recurrence rate of LGG is
relatively high, particularly in cases where the patient is at
high risk. Consequently, a considerable number of LGG pa-
tients are required to undergo radiotherapy or chemothera-
py [4,5]. A number of studies have demonstrated that the
IDH mutation is more prevalent in grade II and III than in
grade IV, indicating that IDH mutations are involved in the

early stages of tumor progression [6,7].

Glioblastoma (GBM) is grade IV glioma, with ID-
H-wildtype, and the key genes and molecular characteristics
are IDH-wildtype, TERT promoter, chromosomes 7/10 and
epidermal growth factor receptor (EGFR) [8,9]. GBM is the
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highest grade of glioma, which studies confirmed that over
90% of GBM are IDH-wildtype tumors [10]. Similar to the
treatment in LGG, the standard care of GBM is the combina-
tion of surgery and radiotherapy and temozolomide che-
motherapy, but some studies suggest targeted therapy for pa-
tients that show aberrant CpG methylation of a particular
gene, O°-methylguanine DNA methyltransferase (MGMT)
gene [11-14]. The targeted therapy based largely on the tar-
get pathways that are common in GBM, including the
phophoinositide 3-kinase (PI3K), protein kinase B (AKT),
mammalian target of rapamycin (mTOR), and the p53 and
the retinoblastoma (RB) pathways [10]. In order to have a
better understanding of the treatment and prognosis of pa-
tients with gliomas, numerous studies have focused on cer-
tain IncRNAs or mRNAs to further investigate the underly-
ing mechanisms and potential prognostic values [15-19].
The interest in long non-coding RNA (IncRNA) and mes-
senger RNA (mRNA) has been outburst over the years, for
their diverse functions in gene regulation and potential ther-

apeutic treatment [20-25].

Ferroptosis is a form of regulated cell death but dif-
ferent from the other programmed death such as apoptosis
[26,27] (Dixon et al., 2012, Liu et al., 2020). Ferroptosis is
an iron-dependent cell death that with the process of iron
accumulation, and thus increased lipid peroxidation would
lead to the loss of lipid repair enzyme glutathione peroxi-
dase (GPX4) and results in the increase of lipid-based reac-
tive oxygen species (ROS) [28-31]. Furthermore, mounting

evidence supported the idea of the therapeutic value of fer-
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roptosis, through constructing prognostic gene models or
targeted therapy with ferroptosis specific pathways in vari-
ous cancers [29,32-36]. It was demonstrated that the induc-
tion of iron death in glioma cells disrupts their antioxidant
homeostasis, leading to the inhibition of tumor growth
[37,38]. Glioblastoma (GBM) cells require substantial quan-
tities of iron to promote tumour growth and progression,
thereby rendering these cells susceptible to destruction
through iron death induction [39]. A study has indicated
that neutrophils facilitate tumor necrosis through the induc-

tion of ferroptosis in glioblastoma progression [40].

Furthermore, the relationship between iron death
and the immune microenvironment of gliomas is also a top-
ic of interest. Modulation of iron death-related signaling
pathways by glioma cells has the potential to influence the
infiltration and function of immune cells in the tumor mi-
croenvironment, thereby evading immune surveillance and
attack [41,42]. In GBM (glioblastoma), there is a notable in-
crease in mutations in P53, and the status of P53 may serve
as an additional prognostic indicator for the treatment of

glioma with iron death-inducing agents [43,44].

A few studies have investigated the prognostic
model constructed by ferroptosis-related IncRNAs or mR-
NAs in gliomas, and these models could be used to identify
potential biomarkers and further treatment applications
[45-47]. The aim of this study is to differentiate the biomark-
ers in LGG and GBM and to make a contribution to the po-
tential target treatment for glioma patients, with the objec-
tive of achieving a better prognosis. In particular, our objec-
tive was to distinguish the exclusively expressed genes in
LGG and GBM and to explore the corresponding pathways
in GBM and LGG, respectively. Moreover, based on the ex-
clusively expressed genes, we constructed several survival
prediction models using machine learning algorithms on
the training set and validated their performance on the test
set. To enhance the model performance, we employed Ran-
dom Over-Sampling Examples (ROSE), a data balancing
method, to address the issue of an unbalanced dataset and
observed improved results, particularly in patients with
GBM.
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Method
Data Acquisition

In this study, data were collected from a number
of common sources, including TCGA, GTEx and multiple
peer-reviewed literature sources. The initial step involved
the retrieval of gene expression data and clinical informa-
tion pertaining to patients diagnosed with GBM and LGG,
respectively, from TCGA. The database was queried to ob-
tain data on 169 patients with GBM and 532 patients with
LGG. As TCGA lacks normal glioma tissues, gene expres-
sion data of normal glioma tissues were downloaded from
GTEx (n = 1132). The normal tissues will be employed to
identify differentially expressed genes in conjunction with
tumor tissues. All data from TCGA and GTEx were trans-
formed to log2(x+1) form for further analysis, and genes ex-
hibiting consistent expression of 0 were also removed. The
59 ferroptosis-related genes were extracted from a previous

study [47].
Correlation Heatmap & Venn Plot

The correlation between each ferroptosis-related
gene was quantified using Pearson correlation, with only
those pairs exhibiting a statistically significant correlation in-
cluded in a heatmap (p < 0.05). In order to explore the rela-
tionship between ferroptosis-related genes and long non--
coding RNAs (IncRNAs) and messenger RNAs (mRNAs),
we measured the Pearson correlation of IncRNAs and fer-
roptosis-related genes, with the limitation of an absolute val-
ue of correlation greater than 0.7 and a p-value less than
0.05. Similarly, a Pearson correlation was conducted to ex-
amine the correlation between mRNAs and ferroptosis-relat-
ed genes. However, the criteria for inclusion were more
stringent, with only those with an absolute correlation value
greater than 0.7 and a p-value less than 0.001 being re-

tained.

The principal rationale for the elevation of the mR-
NA selection threshold was the abundance of mRNAs that
exhibited a high degree of correlation with ferroptosis-relat-
ed genes. Consequently, it was necessary to implement a fur-
ther elimination process through the adjustment of the p--
value. The ferroptosis genes were employed to facilitate a

comparison of the expression differences between GBM
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and LGG through the utilization of a box plot. An analysis
of the expression differences of ferroptosis genes between
GBM and LGG may facilitate an understanding of the levels
of gene expression and glioma progression at different lev-
els. Furthermore, a heatmap was constructed to facilitate a
comparative analysis of the expression differences between

the two cohorts, incorporating the corresponding clinical in-

4

formation (age, living status, and gender). With the clinical
information obtained from TCGA, it is reasonable to have a
summary of how the patients were distributed with regard
to age, gender, and living status. The statistical summary of
patients with GBM and LGG is presented in Table 1 and
Table 2. To further refine the scope of our investigation, we
excluded the genes that were commonly identified in ferrop-
tosis-related mRNAs and IncRNAs in GBM and LGG.

Table 1: The statistics summary table of patients with GBM

Alive (N=30) Dead (N=130) Overall (N=160)
Futime
Mean (SD) 0.923 (0.713) 1.21 (1.10) 1.16 (1.05)
Median [min, max] 0.671 [0.036, 2.62] 1.05[0.0137, 7.35] 0.986 [0.0137,7.35]
Missing 0 (0%) 1(0.8%) 1 (0.6%)
Age
20-40 4(13.3%) 9(6.9%) 13 (8.1%)
41-60 13 (43.3%) 50 (38.5%) 63 (39.4%)
61-80 12 (40.0%) 64 (49.2%) 76 (47.5%)
81-90 1(3.3%) 7 (5.4%) 8 (5.0%)
Gender
Female 12 (40.0%) 44 (33.8%) 56 (35.0%)
Male 18 (60.0%) 86 (66.2%) 104 (65.0%)
Table 2: The statistics summary table of patients with LGG
Alive (N=388) Dead (N=125) Overall (N=513)
Futime
Mean (SD) 2.41 (2.40) 3.34(3.14) 2.64 (2.63)
Median [min, max] 1.72 [-0.00274, 17.6] 2.23[0.0192, 14.2] 1.85 [-0.0024, 17.6]
Missing 1(0.3%) 0 (0%) 1(0.2%)
Age
20-40 194 (13.3%) 43 (6.9%) 237 (8.1%)
41-60 153 (39.4%) 50 (40.0%) 203 (39.6%)
61-80 37 (9.5%) 31 (24.8%) 68 (13.3%)
81-90 0 (0%) 1(0.8%) 1(0.2%)
Missing 4 (1.0%) 0 (0%) 4(0.8%)
Gender
JScholar Publishers J Cancer Res Therap Oncol 2024 | Vol 12: 501




Female 174 (44.8%) 54 (43.2%) 228 (44.4%)
Male 214 (55.2%) 71 (56.8%) 258 (55.6%)
Grade
G2 212 (54.6%) 37 (29.6%) 249 (48.5%)
G3 175 (45.1%) 88 (70.4%) 263 (51.3%)
Unknown 1(0.3%) 0 (0%) 1(0.2%)

Functional Enrichment Analysis

By extracting exclusively expressed ferroptosis-re-
lated long non-coding RNAs (IncRNAs) or messenger
RNAs (mRNAs), we sought to elucidate the gene functions
and pathways in GBM and LGG. The "clusterProfiler" pack-
age was employed for the functional enrichment analysis,
and our genes were mapped with the "org.Hs.eg.db" pack-
age. Gene Ontology (GO) enrichment was used to identify
gene functions in biological process, molecular function,
and cellular component in GBM and LGG, respectively.
Similarly, the Kyoto Encyclopedia of Genes and Genomes
(KEGG) was used to identify pathways in which the selected

genes were enriched.
Consensus Clustering

To further examine the influence of ferroptosis
genes on patient survival in GBM and LGG subgroups, we
conducted a consensus clustering analysis using the R pack-
age "Consensus ClusterPlus." In this analysis, we sought to
group the data into k = 2 to k = 8 clusters, employing the cu-
mulative density function (CDF) and survival rate, to identi-

fy the optimal number of subgroups.
Feature Selection (elastic net)

A considerable body of research employs Lasso re-
gression in conjunction with Cox regression to identify and
select genes that are associated with survival (46). However,
there are a few shortcomings associated with Lasso regres-
sion. It is not effective when several genes with potential sur-
vival-related characteristics are highly correlated. In such in-
stances, Lasso will automatically select one or two genes and
shrink the others to zero, thereby achieving the objective of
variable selection. Another limitation is that when the num-
ber of patients is significantly smaller than the number of

genes, Lasso can only select as many genes as there are pa-
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tients. In other words, the number of genes selected will be
constrained by the number of patients. One potential solu-
tion is to employ random Lasso in place of Lasso regression
(48). However, the computational power required by ran-
dom lasso is considerable, with the running time for process-
ing all the genes in the dataset taking several hours. There-

fore, it is necessary to identify an alternative resolution.

The aforementioned limitations could be partially
alleviated by employing the elastic net, a comparable algo-
rithm that could potentially relax the constraints imposed
by the lasso. In the case of variables that are highly correlat-
ed, elastic net performs better than lasso, which tends to se-
lect only one variable, whereas elastic net maintains both
variables. Lasso regression is a general regression with an
L-1 penalty, which serves to reduce the dimensionality of a
given dataset. In contrast, the elastic net algorithm incorpo-
rates an L-2 penalty in addition to the Lasso regression. The
most advantageous aspect of elastic net is that it is capable
of consistently identifying a solution to the presented
problem, and the computational time required for optimiza-

tion is relatively brief.

A predetermined random seed was used to split
the data into training and test sets in a ratio of 6:4, with the
same ratio of survival outcome in both datasets. Further-
more, the bootstrap technique was employed to eliminate
any bias that might have arisen from randomness. The dis-
tribution of survival outcome was found to be unbalanced
in patients with GBM and LGG, and thus ROSE was applied
to balance the two classes in the training sets. In the applica-
tion, the "caret" package in R was employed to configure the
parameters for the training set. Specifically, within the train-
ing set, 10-fold cross-validation was performed five times.
With regard to the regularization parameter in elastic net,

the search grid for alpha ranged from 0 to 1, with a length
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of 15, and the search grid for lambda ranged from 0.0001 to
0.2, with a length of 5. Those variables with non-zero coeffi-

cients were retained for the purpose of model construction.
Prediction Model (XGBoost, random forest)

After the feature selection, we were able to employ
machine learning techniques to predict the survival status
of patients with gliomas. We chose random forest as our
first prediction model. Random forest is an algorithm that
can be classify as bagging, which is distinct from boosting
method. Similar to XGBoost, in random forest, we con-
structed multiple decision trees as well. In boosting meth-
ods, the later learner depends on the result of the previous
learner, whereas in random forest, each decision trees are in-
dependent from each other. Each decision trees from ran-
dom forest will vote for a result, and the final output of the
random forest is the majority of votes from individual trees.
Generally, random forest is capable to process high dimen-
sion data without dimension reduction and feature selec-
tion. Moreover, with Gini purity, it can also output the im-
portance of each variable. The second algorithm applied in
this study is XGBoost. XGBoost is an efficient gradient
boosting decision tree (GBDT), the idea of boosting is to
compile multiple weak learners into a strong one to im-
prove the prediction ability. Comparing to the general GB-
DT, XGBoost improves the performance by optimizing the
loss function from first order Taylor expansion to the se-
cond order Taylor expansion and making use of the L2 regu-
larization to simplify and avoid overfitting. The evaluation
of the model performance was conducted using the receiver
operating characteristic (ROC) and area under the ROC
curve (AUC) metrics. Additionally, ROSE was employed in
the training set, comprising both LGG and GBM patients,
to eliminate the influence of dataset imbalance and improve

model performance.
Statistical Analysis

All figure plotting, machine learning, and statisti-
cal analysis were conducted using the R statistical comput-
ing platform (version 4.2.2). The correlations evaluated in
the heatmap were all quantified using the Pearson correla-
tion coeflicient, with a significance level of p < 0.05. A box-
plot was constructed to compare the gene expression differ-

ence in GBM and LGG, with a Wilcoxon test (p<0.05) em-
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ployed to this end. The GO and KEGG enrichment analysis
were performed with the "clusterProfiler" package in R,
while survival analysis was conducted using the "survival"

package in R.

Results
Correlation of Ferroptosis-related Genes

The methodology employed in this study is illus-
trated in Figure 1. Figure 2A illustrates the heatmap of 59
ferroptosis-related genes in GBM. All pairs with correlation
and a p-value of less than 0.05 were presented. In general,
the majority of the pairs presented in the heatmap exhibited
a positive correlation. Figure 2B illustrates that the correla-
tion of each pair of ferroptosis genes in LGG exhibits a rela-
tively distinct pattern compared to that observed in GBM.
The number of pairs with correlation and a p-value less
than 0.05 in Figure 2B was less than in Figure 2A. Further-
more, the number of pairs with a negative correlation was
similar to the number of pairs with a positive correlation in
LGG. The Venn diagrams presented the exclusively ex-
pressed mRNAs and IncRNAs, as well as the common mR-
NAs and IncRNAs shared in GBM and LGG, respectively
(Figure 2C-2D). Even with a more rigorous approach to fil-
tering ferroptosis-related mRNAs, the number of highly cor-
related mRNAs with ferroptosis genes remains substantial.
A total of 4704 mRNAs exhibited an absolute Pearson corre-
lation value of greater than 0.7 in GBM, while 719 mRNAs
demonstrated a similar correlation in LGG. The number of
shared mRNAs was significantly higher than the number ex-
clusively expressed in GBM (Figure 2C). Conversely, the
number of highly correlated IncRNAs was relatively low in
both GBM and LGG. Notably, the common IncRNAs no
longer comprised the majority of the ferroptosis-related In-
cRNAs in LGG compared to mRNAs (Figure 2C-2D).

The expression level discrepancy in each ferropto-
sis-related gene between GBM and LGG was illustrated in a
boxplot (Figure 3A). Among the 59 genes, five exhibited no
differential expression between GBM and LGG. Conversely,
32 of the 59 ferroptosis-related genes exhibited significantly
elevated expression levels in LGG compared to GBM. A con-
siderable number of genes exhibited high expression levels

in LGG, while 22 genes demonstrated higher expression lev-
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els in GBM than in LGG. Furthermore, we combined the expression of ferroptosis-related genes in the two cohorts
clinical information of the patients with the differentially ex- was different, particularly when they were split into smaller
pressed genes in GBM and LGG (Figure 3B). In general, the subgroups.

TCGA

GBEM:n=169
LGGn=532 Clinical Information
GTExn=1132

Consensus
Clustering

Survival Analysis

Ferroptosis genes:
n=58

v v v v

‘ GEM Ferroptosis ‘ LGG Ferroptosis ‘ ‘ GEM Ferroptosis H LGG Ferroptosis ‘

related IncRNA related IncRNA related mRNA related mRNA
Venn Diagram Venn Diagram
GEM < LGG GBEM < LGG

GO KEGG GO KEGG

enrichment enrichment

v

Feature selection:
1. Lasso
2. Elastic net

A 4

Prediction model

Random Forest XGBoost

ROC, AUC

Figure 1: Workflow of this study
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Figure 2: Correlation of ferroptosis-related genes in pairs and Venn diagrams for ferroptosis-related genes. (A-B) Heatmap of

the correlation of ferroptosis-related genes in GBM (A) and LGG (B), respectively. Only pairs with correlation and t-test with

p<0.05 were shown; (C) Venn diagram of mRNAs related to ferroptosis genes that the filtering condition is |cor| > 0.7, p

<0.001; (D) Venn Diagram of IncRNAs related to ferroptosis genes that the filtering condition is |cor| > 0.7, p < 0.01.

Functional Enrichment Analysis

By investigating exclusively expressed genes in two
distinct phases of glioma development, we are able to ascer-
tain their functional roles and associated biological path-
ways. In the GO analysis, a significant proportion of the
genes were found to be involved in mitochondrial-related
functions in mRNAs in GBM (Figure 4A). In the molecular
function section, some genes were found to be involved in
oxidoreduction and ubiquitin-related functions. While the
majority of the ferroptosis-related mRNAs in LGG were
shared with GBM, the functions of the exclusively expressed

mRNAs in LGG were distinct from those of the genes in
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GBM (Figure 4B). The functions in the biological process
category were predominantly related to synaptic and neuro-
transmitter transport, a pattern that was also observed in
the cellular component and molecular function sections,
where channel activities and synaptic and neuronal activi-
ties were similarly prominent. With regard to the enrich-
ment pathways in mRNAs in GBM, the majority of the path-
ways were found to be enriched in various neural diseases
(Figure 5A). In contrast, in LGG, the pathways were pre-
dominantly enriched in multiple signaling pathways and a
range of substance addictions, such as morphine addiction

(Figure 5B).
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Consensus Clustering of Glioma Patients and Clini-

cal Subtypes

It would be beneficial to determine whether there
are any subgroups with differing survival rates, allowing for
a more in-depth examination of the condition and more ac-
curate decision-making when managing gliomas. The
"ConsensusClusterPlus" package revealed that the optimal
clustering of patients with GBM was achieved with k=4 (see
Supplementary Figure 1A). However, there was a discrepan-

cy between the consensus CDF and the area under the curve
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and the effect of subgroup splitting (Supplementary Figure
1B-C), despite the evidence of a significant difference
among subgroups (Supplementary Figure 1D). Meanwhile,
the optimal number of subgroups in patients with LGG was
3 (Supplementary Figure 1E). The eftect of subgroup splitt-
ing was similar to that observed in GBM, whereby the sub-
groups did not yield favorable outcomes (Supplementary
Figure 1F-G). Furthermore, the subgroups in LGG did not
demonstrate differences in survival rates (Supplementary
Figure 1H).
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Figure 4: Performed GO functional analysis on mRNAs from GBM and LGG. (A) Top: GO analysis on biological process on

ferroptosis-related mRNAs in GBM. A few of the biological processes were focused on mitochondrial functions. Middle: GO

analysis on molecular functions, and a great amount of functions were focused on oxidoreductase activities. Bottom: GO analy-

sis on cellular component functions, the main functions in this plot were involved with mitochondrial again; (B) Top: GO anal-

ysis on ferroptosis-related mRNAs in LGG. GO analysis on biological process that most functions were about chemical synap-

tic transmission. Middle: GO analysis on molecular functions, and a lot were chemical channel activities. Bottom: GO analysis

on cellular component functions, and many functions were about synaptic activities.

Despite the consensus clustering didn’t show the

survival difference among subgroups, we inspected the sur-

vival differences in clinical subtypes in both GBM and LGG

patients. Survival analysis was performed to assess the effect

of gender and age (divided into over 45 and under 45 cate-

gories) in survival on training and test sets. In GBM pa-
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tients, the analysis showed no statistically significant differ-
ences between the two characteristics (Supplementary Fig-
ure 2A). In addition, we did the same analysis for LGG pa-
tients and found that there was no difference in survival be-
tween men and women, but that patients in the two age

groups had significantly different survival rates (Supplemen-
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tary Figure 2B).
Feature Selection and Prediction Model

The process of feature selection was conducted us-
ing elastic net as the fundamental method, prior to conduct-
ing the survival analysis. The progression of the search grid,
which was run using elastic net, and its results for mRNAs
in GBM are presented in Figure 6A. The mixing percentage

was plotted against the accuracy for different values of the

11

regularization parameters in the training set. In general,
when the regularization parameter was in the range of
0.15-0.2, the highest accuracy was observed; conversely,
when the parameter was between 0.0001 and 0.05, the accu-
racy was observed to decrease as the parameter increased.
With the optimized parameter selected using elastic net, a
histogram of the variable importance in the model was ac-
quired, in which the importance is in descending order (Fig-
ure 6B).
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Following the reduction of the number of genes,-
survival analysis was conducted using the 20 selected
genes,with the results displayed in a forest plot (Figure 6C).
Mean-while, the plot demonstrating the optimized parame-
ter indi-cated that the algorithm reached its highest level of
accuracywhen the regularization parameter was set between
0.15 and0.2 (Figure 6D). Of the 20 selected genes with the
highestvariable importance, a survival analysis was
performed onthem. Among these genes, only two were
found to be signifi-cantly related to survival (Figure 6E-6F).
In addition to in-vestigating the mRNAs in gliomas, we have
also selected fer-roptosis-related IncRNAs with elastic net
(SupplementaryFigure 3). However, with the selected
IncRNAs in elasticnet, none of the genes were found to be
survival-related inboth GBM and LGG (Supplementary
Figure 3C and 3F).

Conversely, we employed a random forest
ap-proach to forecast the algorithm's performance in
predict-ing survival outcomes. The variables that had been
filteredusing elastic net were then extracted and incorporat-
ed intothe random forest model. The variable importance
and Giniimpurity were subsequently displayed (see Figure
7A). Fol-lowing the fitting of the genes into the random
forest, the ac-curacy of the training set and test sets were
presented (Fig-ure 7B). The AUC from the random forest
model was 1.0for the training set and 0.5 for the test set,
which was an ex-ceptionally high value for the training set
and a surprisinglylow value for the test set. During the analy-
sis, it was ob-served that the incidence of death among
patients diag-nosed with glioblastoma (GBM) (77%) was
significantlyhigher than that of patients who survived
gliomas (23%).The discrepancy between the accuracy of the
training setand test set was primarily attributable to the
imbalanced da-taset inherent to the disease. To address this,
we appliedROSE to obtain a relatively balanced data set.
Utilizing thealgorithm, the AUC obtained from the random
forest analy-sis of the balanced dataset was 0.84, although
the AUC inthe test set remained 0.5 (Figure 7C).

In the mRNAs in LGG, the same procedures were
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followed as in GBM, resulting in two plots demonstra-
tingthe variable importance from random forest (Figure
7D-E).Subsequently, the performance of the random
forest wasevaluated based on the AUCs obtained from
the trainingand test sets. As with the model performance
in GBM, theAUC was 1.0 and 0.5 for the training and test
sets, respec-tively. In the case of the balanced dataset
produced byROSE, the AUC in the training set was
reduced to 0.83 dueto the decrease in the proportion of
deaths, whereas theAUC in the test set was only increased

by 0.01 in compari-son to the original dataset (Figure 7G).

The results of the model performance in XGBoost-
were significantly superior to those of random forest.
Uponcompletion of 70 iterations, it was observed that the
AUCvalue exhibited a gradual increase with an increase
in thenumber of iterations in the training set for GBM
(Figure8A). A comparison of the training sets before and
after databalancing in GBM revealed that the AUC was
0.82 beforeROSE at the beginning of the iteration.
However, afterROSE, the AUC was already close to 0.9,
and it reached itspeak at a faster rate in the dataset with
ROSE than in theone without. Nevertheless, in the AUC
test set of XGBoostwith ROSE, the AUC decreased as the

number of iterationsincreased.

The AUC in the test set of XGBoost without
theROSE demonstrated an initial increase, followed by a
de-crease, and a subsequent period of minor fluctuation,
ulti-mately reaching a stable AUC after 40 iterations. The
resultsfor LGG exhibited a somewhat disparate pattern.
The areaunder the curve (AUC) of the XGBoost training
processcommenced at a relatively low value of 0.6 and
reached itspeak around 20 iterations. In contrast, the AUC
in the train-ing set with ROSE commenced at 0.83 and
reached 1 at afaster rate. Nevertheless, the AUCs in the test
sets exhibiteda high degree of intertwining before the first
20 iterations,and the AUCs in the test set with ROSE
demonstrated con-sistently lower values than those in

the test set withoutROSE (Figure 8B).
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training (black) and test (blue) sets.
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Discussion

Ferroptosis is relatively new form of programmed
death that has been gradually studied since 2012 [48]. A
study demonstrated that in GBM, LGG and non-tumor
groups, a substantial number of ferroptosis-related genes
were differentially expressed. Furthermore, a prognostic
risk model was established to predict the survival of patients
with gliomas, and the risk score was also correlated with
IDH mutation status. This risk score proved to be an effec-
tive estimator for predicting immunotherapy [48]. This
study explored the differential expression of 59 ferropto-

sis-related genes between GBM, LGG, and non-tumor tis-
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sues. Our investigation involved the identification of the top
100 differentially expressed IncRNAs and mRNAs, exclusive
to GBM and LGG, and correlated with ferroptosis. Our find-
ings revealed that the majority of the 59 ferroptosis-related
genes exhibited higher expression levels in LGG than in
GBM. This observation provides a promising foundation
for further investigation into the expression differences be-
tween these two levels of gliomas and the prospect of devel-
oping targeted therapies against LGG and GBM, with the

aim of achieving more favorable treatment outcomes.

A comparison of the expression of ferroptosis

genes in GBM and LGG revealed that over 50% of genes in-
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volved in ferroptosis demonstrated higher expression in
LGG compared to GBM, as previously indicated in the re-
sults section. The most highly expressed gene in both GBM
and LGG was CRYAB. Prior studies have indicated that the
overexpression of CRYAB correlates with tumor progres-
sion and a poor prognosis in patients diagnosed with
ovarian cancer [49], lung cancer [50], and breast cancer
[51]. Another study reported that in oligodendroglioma,
CRYAB was more highly expressed in astrocyte-like cells
than in oligodendrocyte-like cells [52]. It seems plausible
that the elevated expression of CRYAB in LGG is at-
tributable to the inherent heterogeneity of LGG and the like-
lihood of its advancement to a more malignant grade. On
the other hand, among the ferroptosis genes that have high-
er expression in GBM than in LGG, CD44 expressed the
highest level in GBM. Moreover, several studies have de-
monstrated that the overexpression of CD44 correlates with

poorer prognosis in patients with gliomas [53,54].

A growing body of evidence indicates that mito-
chondria play a pivotal role in ferroptosis through the depri-
vation of cysteine [55]. While some studies have indicated a
controversial and context-based role for defense mech-
anisms in ferroptosis mitochondria, other studies have
shown that a mitochondria-targeted antioxidant, MitoTEM-
PO, induces a protective effect [55-57]. These findings align
with our GO analysis of mRNAs in GBM, which revealed a
significant enrichment of biological processes within mito-
chondrial activities. In the gene ontology (GO) enrichment
analysis of GBM, oxidoreductase activity was identified as a
recurring theme. Additionally, research has demonstrated
that oxidoreductases, such as glutaredoxin 2 (Grx2c), play a
role in facilitating glioma cell migration and invasion [58].
However, the GO analysis of LGG did not exhibit a com-
parable pattern to that observed in GBM. Furthermore, the
role of mitochondria in ferroptosis has been predominantly
investigated in GBM. It can be postulated that the regula-
tion of mitochondria is more closely associated with the
mechanism of ferroptosis in more severe glioma cells

[59,60].

Additionally, amongst the three genes that exhibit-
ed survival-related characteristics in GBM, COX4IL belongs
to the family of cytochrome c oxidase (COX), which is locat-

ed within the respiratory chain of mitochondria. However,
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the gene itself has seldom undergone extensive investiga-
tion. TRAPPC2L is a component of the transport protein
particle complex and has been identified in human substan-
tia neurons. However, there is a paucity of research on this
gene in gliomas [61,62]. The two survival-related genes in
LGG were SYP and PDCDILG2. The hazard ratio for SYP
was less than 1 in the survival analysis, whereas the ratio for
PDCDI1LG2 was greater than 1. The result for SYP, with a
hazard ratio less than 1, indicated that patients with higher
SYP expression had a lower risk of death than those with
lower SYP expression. In addition to our own findings,
another study has also identified PDCD1LG2 as a potential
biomarker for predicting the prognosis of IDH mutation sta-

tus in gliomas [63].

The genes selected via elastic net were subjected to
analysis using random forest and XGBoost. The resulting
ROC is illustrated in Figure 7. Two algorithms were used to
predict the survival status of glioma patients; however, even
with data balancing using ROSE, the outcomes remain sub-
optimal, particularly in LGG. In general, XGBoost demons-
trated superior performance compared to random forest,
both with and without ROSE, particularly in the context of
GBM. It would be beneficial to investigate further why the
performance in the test set with ROSE was less favorable
than without data balance. A potential enhancement in the
predictive efficacy of the model could be accomplished by
taking the intersection of the genes identified by elastic net
and feature selection through random forest. This could be
achieved by utilizing the variable importance as a metric.
Previous research has indicated that the regulation of a few
genes may exhibit differential patterns at varying stages of
gliomas. However, this information is not currently avail-
able within our data set. The availability of data regarding
the stages of gliomas may have enabled the development of
a more specific prognostic model for GBM severity. There-
fore, integrating data from GEO is considered to be a signifi-
cant step towards improving the model performance and

generalizing the findings.

It is recommended that future studies should also
aim to incorporate additional information on glioma stages
and further investigate the subtypes of gliomas, including
1p/19q non-codeletion cases, isocitrate dehydrogenase (ID-

H) wild-type cases and mesenchymal subtypes. This may fa-
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cilitate the development of more tailored and robust prog-
nostic models for GBM severity. Furthermore, despite the
evidence that XGBoost is more effective than random forest
in GBM, the prediction models did not yield optimal re-
sults. Furthermore, it would be beneficial to explore ad-
vanced machine learning techniques and algorithms, such
as deep learning, as these may offer promising avenues to
enhance the predictive capabilities of the model, ultimately
leading to better patient stratification and personalized treat-

ment strategies for gliomas.

Conclusion

Ferroptosis is relatively a newly discovered pro-
grammed cell death, and the relevant research especially in
gliomas are still ongoing. In our study, we pointed out that
the majority of the ferroptosis-related genes were higher in
LGG, and the future study could gather more clinical infor-
mation as the status of the progression to malignant glioma
in LGG and find the potential biomarker and therefore im-
plement targeted therapy to get a better prognosis for pa-
tients. We explored the exclusively enriched functions and
pathways in GBM and LGG by filtering out the exclusively
expressed genes in the two stages of gliomas. Although the

performance of prediction model was not ideal, but we test-
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ed that XGBoost is generally a better algorithm in predict-
ing the survival status in GBM. With a more careful adjust-
ment of the regularization parameter, a model with better
prediction of the survival is possible, which could be a po-

tential prognostic tool for clinicians and researchers.

Conflict of Interest

The authors declare that the research was conduct-
ed in the absence of any commercial or financial relation-
ships that could be construed as a potential conflict of inter-

est.

Author Contributions

Yanliang Tang: Writing - original draft, Conceptu-
alization, Methodology, Data curation, Formal analysis,
Validation, Software; Xiaoli Wang: Data curation, Formal
analysis, Software; Xiaofei Tang: Data curation, Formal anal-
ysis, Software; Ye Yuan: Data curation, Formal Analysis.
Wenwen Wang: Writing - original draft, Resource, Project

administration.

Funding Information

No funding.

J Cancer Res Therap Oncol 2024 | Vol 12: 501



18

Supplemental Figures

consensus matrix k=4

EomEO
BWN S
omo
PRENIN

' EE]
=
g

consensus CDF
C D consensus CDF

T
o
s s

0
024
4
08
0

cansensus index

2.5 g
3 (Days)

O a5 70 08 o0 1625 210 2% 200 5 B0 405 410 4745 S0 5478 S0 6205
Time(years)

Deltaarea
E Delta area
= © z
g ]
o &
5 8
tg: a | 5 2
&
g \ £
£
S ]
2 - o i
Z ©7 e T
£ . Y
ol o
o —a—— ———
T T T T T T T e
2 3 4 5 & 7 3
H 2 3 ‘ 5 6 7 3
G « k
Subtype == classl =+ class2 Subtype == class] == class2
& ~+class3 = class4 100 = class3
1
ors
075
- 050 s 050
s 8
025
p=0025 p=096
000 000 Time (Days)
[ Eg 70 3 0 3 70 ED T % 0 W W W% 2% ko _cww scod 360 405 400 4745 10 55 50 6205
Time (Days) Timetyeera)
m o W om @ = w w8 8 4 4 2 1 1 0 o 0
» I s 3 2 ' 1 g
” Ses2| w3 @ W o W 2 w W 8 7 6 4 4 3 2 1 1 1
15 ® dass3 us 112 I a 5 18 " 3 4 2 1 1 1 o o
3 et S ' Time (D

e ey
Time (Days)

Supplementary Figure 1: Consensus clustering analysis in GBM and LGG. (A) According to the consensus clustering algo-
rithm, the patients in GBM were clustered into 4 groups; (B) and (F) With the plot of CDF under k=2 to 8, we were able to pick
the number of cluster between consensus index at 0.1 to 0.9. Ideally we tend to choose the number with the smallest difference

between the two consensus index cutoff; (C) and (G) Following the CDF plotted in B and F, each point in C and G represents
the area under the CDF at particular number of cluster. We usually pick the number after the sudden drop of the area from pre-
vious point, and the next k does not change much as the current number. In this case, we picked k=4 and k=3 for GBM and
LGG respectively; (D) and (H) The Kaplan Meier curves of each class clustered by the algorithm, with overall survival on the y
axis and time by days, whereas only the clusters in GBM showed group differences (p =0.025).
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Supplement Figure 2: Assessment of the difference in survival outcome between clinical subtypes in glioma patients. A). Com-

parison of the survival outcome of the difference in gender and age groups in the training and test sets in GBM patients, respec-

tively. Gender and age groups did not show survial differences in GBM patients. B). Comparison of the survival outcome of the

difference in gender and age groups in the training and test sets in LGG

patients, respectively. Patients under the age of 45 have

a better survival rate than those over 45.
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Supplementary Figure 3: Parameters of feature selection using elastic net. (A) The plot showed the changes in accuracy when
the algorithm takes in different values of regularization parameter where the blue dotted line represent a series of parameter
that was equally cut between 1e-04 to 0.05, the same to all the other lines; (B) The variable importance of the features selected
by elastic net after we obtained the optimal value from previous plot; (C) The forest plot of the 20 selected variables and ran
them into survival analysis, none of the 20 genes showed survival related (p< 0.05); (D) The plot of the changes in accuracy
when the mixing percentage changes at different value of regularization parameters; (E) The top 20 ferroptosis related IncRNAs
in LGG that were selected from elastic net, and ranked with variable importance. F). None of the 20 IncRNAs were significantly

related to survival.
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