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Abstract

Introduction: Glioma is one of the most prevalent tumors in the central nervous system and has been classi�ed into low--
grade glioma (LGG) and glioblastoma (GBM). Ferroptosis is a form of iron-dependent programmed cell death. �e objec-
tive of this study is to construct a survival status prediction model using ferroptosis-related genes for patients with LGG and
GBM.

Methods: RNA-seq data and clinical information pertaining to patients with gliomas were collected from TCGA. Predictive
models were constructed based on selected speci�cally expressed lncRNAs and mRNAs in GBM and LGG that demonstrat-
ed a high degree of correlation with ferroptosis genes. To assess the performance of the prediction models, we examined the
areas under the curve (AUC). In order to achieve a balanced dataset, we applied Random Oversampling Examples (ROSE).

Results: A comparison of the expression of 59 ferroptosis-related genes in LGG and GBM revealed a predominance of high-
ly expressed gene transcripts in LGG, as compared to GBM. �e results of our enrichment and pathway analyses revealed
notable di�erences in the functions and pathways of exclusively expressed ferroptosis-related lncRNAs and mRNAs in LGG
and GBM. XGBoost and random forest were employed to forecast the survival status of glioma patients based on the top 20
lncRNAs and mRNAs selected from elastic net. Upon evaluating model performance using AUC, we observed that XG-
Boost exhibited superior performance in predicting survival outcomes for patients with LGG and GBM. Furthermore, we
observed a notable improvement in model performance for XGBoost following ROSE in the GBM cohort, while this was
less pronounced in the LGG subgroup.
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Conclusion: We constructed a survival status prediction model for patients with LGG and GBM. Furthermore, with the aid
of elastic net and Cox regression, we were able to identify several survival ferroptosis-related mRNAs in GBM and LGG, re-
spectively. �ese potential biomarkers warrant further research for the purpose of validating their prognostic value.
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Abbreviations

CDF: cumulative density function; CNS: central nervous system; GBM: glioblastoma; GTEx: Genotype-Tissue Expression;
GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes; lncRNA: long non-coding RNA; LGG: low-grade
glioma;  mRNA:  messenger  RNA;  OS:  Overall  Survival;  PCA:  Principal  Component  Analysis;  ROSE:  Random Over  Sam-
pling  Examples;  TCGA:  �e  Cancer  Genome  Atlas  Program;  TERT:  Telomerase  Reverse  Transcriptase;  WHO:  World
Health Organization.

Introduction

Glioma is one of the most common tumors in the
central nervous system (CNS) [1]. According to the ��h edi-
tion  of  the  WHO  classi�cation  of  tumors  of  the  CNS  in
2021, several main subtypes of gliomas are as follows: astro-
cytoma  is  a  type  of  lower  grade  glioma  (LGG)  with  isoci-
trate dehydrogenase (IDH) mutation, which has the key di-
agnostic  genes,  including  IDH1,  IDH2,  ATRX,  TP53  and
CDKN2A/B.  Oligodendroglioma  is  another  type  of  LGG
with  IDH  mutation  and  1p/19q-codeleted,  which  has  the
key diagnostic genes of IDH1, IDH2, 1p/19q, telomerase rev-
erse transcriptase (TERT) promoter, capicua transcriptional
repressor  (CIC),  far  upstream  element  binding  protein  1
(FUBP1),  and  NOTCH1.  �e  conventional  treatment  for
LGG is surgical  resection. Patients who underwent surgery
exhibited  a  superior  survival  outcome  compared  to  those
who did not [2-4]. However, the recurrence rate of LGG is
relatively  high,  particularly  in  cases  where  the  patient  is  at
high risk. Consequently, a considerable number of LGG pa-
tients are required to undergo radiotherapy or chemothera-
py  [4,5].  A  number  of  studies  have  demonstrated  that  the
IDH mutation is more prevalent in grade II and III than in
grade IV, indicating that IDH mutations are involved in the
early stages of tumor progression [6,7].

Glioblastoma (GBM) is grade IV glioma, with ID-
H-wildtype, and the key genes and molecular characteristics
are IDH-wildtype, TERT promoter, chromosomes 7/10 and
epidermal growth factor receptor (EGFR) [8,9]. GBM is the

highest grade of glioma, which studies con�rmed that over
90% of GBM are IDH-wildtype tumors [10]. Similar to the
treatment in LGG, the standard care of GBM is the combina-
tion  of  surgery  and  radiotherapy  and  temozolomide  che-
motherapy, but some studies suggest targeted therapy for pa-
tients  that  show  aberrant  CpG  methylation  of  a  particular
gene, O6-methylguanine DNA methyltransferase (MGMT)
gene [11-14]. �e targeted therapy based largely on the tar-
get  pathways  that  are  common  in  GBM,  including  the
phophoinositide 3-kinase (PI3K), protein kinase B (AKT),
mammalian target of rapamycin (mTOR), and the p53 and
the retinoblastoma (RB) pathways [10]. In order to have a
better understanding of the treatment and prognosis of pa-
tients with gliomas, numerous studies have focused on cer-
tain lncRNAs or mRNAs to further investigate the underly-
ing mechanisms and potential  prognostic  values [15-19].
�e interest in long non-coding RNA (lncRNA) and mes-
senger RNA (mRNA) has been outburst over the years, for
their diverse functions in gene regulation and potential ther-
apeutic treatment [20-25].

Ferroptosis is a form of regulated cell death but dif-
ferent from the other programmed death such as apoptosis
[26,27]  (Dixon  et  al.,  2012,  Liu  et  al.,  2020).  Ferroptosis  is
an  iron-dependent  cell  death  that  with  the  process  of  iron
accumulation, and thus increased lipid peroxidation would
lead  to  the  loss  of  lipid  repair  enzyme  glutathione  peroxi-
dase (GPX4) and results in the increase of lipid-based reac-
tive oxygen species (ROS) [28-31]. Furthermore, mounting
evidence supported the idea of the therapeutic value of fer-
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roptosis,  through  constructing  prognostic  gene  models  or
targeted therapy with ferroptosis  speci�c pathways in vari-
ous cancers [29,32-36]. It was demonstrated that the induc-
tion of iron death in glioma cells disrupts their antioxidant
homeostasis,  leading  to  the  inhibition  of  tumor  growth
[37,38]. Glioblastoma (GBM) cells require substantial quan-
tities  of  iron  to  promote  tumour  growth  and  progression,
thereby  rendering  these  cells  susceptible  to  destruction
through  iron  death  induction  [39].  A  study  has  indicated
that neutrophils facilitate tumor necrosis through the induc-
tion of ferroptosis in glioblastoma progression [40].

Furthermore,  the relationship between iron death
and the immune microenvironment of gliomas is also a top-
ic  of  interest.  Modulation  of  iron  death-related  signaling
pathways  by glioma cells  has  the  potential  to  in�uence the
in�ltration and function of immune cells in the tumor mi-
croenvironment, thereby evading immune surveillance and
attack [41,42]. In GBM (glioblastoma), there is a notable in-
crease in mutations in P53, and the status of P53 may serve
as  an  additional  prognostic  indicator  for  the  treatment  of
glioma with iron death-inducing agents [43,44].

A  few  studies  have  investigated  the  prognostic
model  constructed  by  ferroptosis-related  lncRNAs  or  mR-
NAs in gliomas, and these models could be used to identify
potential  biomarkers  and  further  treatment  applications
[45-47]. �e aim of this study is to di�erentiate the biomark-
ers in LGG and GBM and to make a contribution to the po-
tential target treatment for glioma patients, with the objec-
tive of achieving a better prognosis. In particular, our objec-
tive  was  to  distinguish  the  exclusively  expressed  genes  in
LGG and GBM and to explore the corresponding pathways
in GBM and LGG, respectively. Moreover, based on the ex-
clusively  expressed  genes,  we  constructed  several  survival
prediction  models  using  machine  learning  algorithms  on
the training set and validated their performance on the test
set. To enhance the model performance, we employed Ran-
dom  Over-Sampling  Examples  (ROSE),  a  data  balancing
method,  to  address  the  issue  of  an unbalanced dataset  and
observed  improved  results,  particularly  in  patients  with
GBM.

Method

Data Acquisition

In  this  study,  data  were  collected  from  a  number
of  common  sources,  including  TCGA,  GTEx  and  multiple
peer-reviewed  literature  sources.  �e  initial  step  involved
the  retrieval  of  gene  expression  data  and  clinical  informa-
tion pertaining to patients diagnosed with GBM and LGG,
respectively,  from TCGA. �e database was queried to ob-
tain data  on 169 patients  with GBM and 532 patients  with
LGG.  As  TCGA  lacks  normal  glioma  tissues,  gene  expres-
sion  data  of  normal  glioma tissues  were  downloaded  from
GTEx  (n  =  1132).  �e  normal  tissues  will  be  employed  to
identify  di�erentially  expressed  genes  in  conjunction  with
tumor tissues.  All  data  from TCGA and GTEx were  trans-
formed to log2(x+1) form for further analysis, and genes ex-
hibiting consistent expression of 0 were also removed. �e
59 ferroptosis-related genes were extracted from a previous
study [47].

Correlation Heatmap & Venn Plot

�e  correlation  between  each  ferroptosis-related
gene  was  quanti�ed  using  Pearson  correlation,  with  only
those pairs exhibiting a statistically signi�cant correlation in-
cluded in a heatmap (p < 0.05). In order to explore the rela-
tionship  between  ferroptosis-related  genes  and  long  non--
coding  RNAs  (lncRNAs)  and  messenger  RNAs  (mRNAs),
we  measured  the  Pearson  correlation  of  lncRNAs  and  fer-
roptosis-related genes, with the limitation of an absolute val-
ue  of  correlation  greater  than  0.7  and  a  p-value  less  than
0.05.  Similarly,  a Pearson correlation was conducted to ex-
amine the correlation between mRNAs and ferroptosis-relat-
ed  genes.  However,  the  criteria  for  inclusion  were  more
stringent, with only those with an absolute correlation value
greater  than  0.7  and  a  p-value  less  than  0.001  being  re-
tained.

�e principal rationale for the elevation of the mR-
NA selection threshold was the abundance of  mRNAs that
exhibited a high degree of correlation with ferroptosis-relat-
ed genes. Consequently, it was necessary to implement a fur-
ther elimination process through the adjustment of the p--
value.  �e  ferroptosis  genes  were  employed  to  facilitate  a
comparison  of  the  expression  di�erences  between  GBM
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and LGG through the utilization of a box plot. An analysis
of  the  expression  di�erences  of  ferroptosis  genes  between
GBM and LGG may facilitate an understanding of the levels
of gene expression and glioma progression at di�erent lev-
els.  Furthermore,  a  heatmap was constructed to facilitate  a
comparative  analysis  of  the expression di�erences  between
the two cohorts, incorporating the corresponding clinical in-

formation (age, living status, and gender). With the clinical
information obtained from TCGA, it is reasonable to have a
summary of  how the patients  were  distributed with regard
to age, gender, and living status. �e statistical summary of
patients  with  GBM  and  LGG  is  presented  in  Table  1  and
Table 2. To further re�ne the scope of our investigation, we
excluded the genes that were commonly identi�ed in ferrop-
tosis-related mRNAs and lncRNAs in GBM and LGG.

Table 1: �e statistics summary table of patients with GBM

Alive (N=30) Dead (N=130) Overall (N=160)

Futime

Mean (SD) 0.923 (0.713) 1.21 (1.10) 1.16 (1.05)

Median [min, max] 0.671 [0.036, 2.62] 1.05[0.0137, 7.35] 0.986 [0.0137,7.35]

Missing 0 (0%) 1 (0.8%) 1 (0.6%)

Age

20-40 4(13.3%) 9 (6.9%) 13 (8.1%)

41-60 13 (43.3%) 50 (38.5%) 63 (39.4%)

61-80 12 (40.0%) 64 (49.2%) 76 (47.5%)

81-90 1 (3.3%) 7 (5.4%) 8 (5.0%)

Gender

Female 12 (40.0%) 44 (33.8%) 56 (35.0%)

Male 18 (60.0%) 86 (66.2%) 104 (65.0%)

Table 2: �e statistics summary table of patients with LGG

Alive (N=388) Dead (N=125) Overall (N=513)

Futime

Mean (SD) 2.41 (2.40) 3.34 (3.14) 2.64 (2.63)

Median [min, max] 1.72 [-0.00274, 17.6] 2.23 [0.0192, 14.2] 1.85 [-0.0024, 17.6]

Missing 1 (0.3%) 0 (0%) 1 (0.2%)

Age

20-40 194 (13.3%) 43 (6.9%) 237 (8.1%)

41-60 153 (39.4%) 50 (40.0%) 203 (39.6%)

61-80 37 (9.5%) 31 (24.8%) 68 (13.3%)

81-90 0 (0%) 1 (0.8%) 1 (0.2%)

Missing 4 (1.0%) 0 (0%) 4 (0.8%)

Gender
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Female 174 (44.8%) 54 (43.2%) 228 (44.4%)

Male 214 (55.2%) 71 (56.8%) 258 (55.6%)

Grade

G2 212 (54.6%) 37 (29.6%) 249 (48.5%)

G3 175 (45.1%) 88 (70.4%) 263 (51.3%)

Unknown 1 (0.3%) 0 (0%) 1 (0.2%)

Functional Enrichment Analysis

By extracting exclusively expressed ferroptosis-re-
lated  long  non-coding  RNAs  (lncRNAs)  or  messenger
RNAs (mRNAs), we sought to elucidate the gene functions
and pathways in GBM and LGG. �e "clusterPro�ler" pack-
age  was  employed  for  the  functional  enrichment  analysis,
and  our  genes  were  mapped  with  the  "org.Hs.eg.db"  pack-
age.  Gene Ontology (GO) enrichment was used to identify
gene  functions  in  biological  process,  molecular  function,
and  cellular  component  in  GBM  and  LGG,  respectively.
Similarly,  the  Kyoto  Encyclopedia  of  Genes  and  Genomes
(KEGG) was used to identify pathways in which the selected
genes were enriched.

Consensus Clustering

To  further  examine  the  in�uence  of  ferroptosis
genes on patient survival  in GBM and LGG subgroups,  we
conducted a consensus clustering analysis using the R pack-
age "Consensus ClusterPlus."  In this  analysis,  we sought to
group the data into k = 2 to k = 8 clusters, employing the cu-
mulative density function (CDF) and survival rate, to identi-
fy the optimal number of subgroups.

Feature Selection (elastic net)

A considerable body of research employs Lasso re-
gression in conjunction with Cox regression to identify and
select genes that are associated with survival (46). However,
there  are  a  few shortcomings  associated with Lasso regres-
sion. It is not e�ective when several genes with potential sur-
vival-related characteristics are highly correlated. In such in-
stances, Lasso will automatically select one or two genes and
shrink the others to zero, thereby achieving the objective of
variable selection. Another limitation is that when the num-
ber  of  patients  is  signi�cantly  smaller  than  the  number  of
genes, Lasso can only select as many genes as there are pa-

tients. In other words, the number of genes selected will be
constrained by the number of patients. One potential solu-
tion is to employ random Lasso in place of Lasso regression
(48).  However,  the  computational  power  required  by  ran-
dom lasso is considerable, with the running time for process-
ing all the genes in the dataset taking several hours. �ere-
fore, it is necessary to identify an alternative resolution.

�e aforementioned limitations could be partially
alleviated by  employing the  elastic  net,  a  comparable  algo-
rithm  that  could  potentially  relax  the  constraints  imposed
by the lasso. In the case of variables that are highly correlat-
ed, elastic net performs better than lasso, which tends to se-
lect  only  one  variable,  whereas  elastic  net  maintains  both
variables.  Lasso  regression  is  a  general  regression  with  an
L-1 penalty, which serves to reduce the dimensionality of a
given dataset. In contrast, the elastic net algorithm incorpo-
rates an L-2 penalty in addition to the Lasso regression. �e
most advantageous aspect of  elastic net is  that it  is  capable
of  consistently  identifying  a  solution  to  the  presented
problem, and the computational time required for optimiza-
tion is relatively brief.

A  predetermined  random  seed  was  used  to  split
the data into training and test sets in a ratio of 6:4, with the
same  ratio  of  survival  outcome  in  both  datasets.  Further-
more,  the  bootstrap  technique  was  employed  to  eliminate
any bias that might have arisen from randomness. �e dis-
tribution  of  survival  outcome was  found  to  be  unbalanced
in patients with GBM and LGG, and thus ROSE was applied
to balance the two classes in the training sets. In the applica-
tion, the "caret" package in R was employed to con�gure the
parameters for the training set. Speci�cally, within the train-
ing  set,  10-fold  cross-validation  was  performed  �ve  times.
With  regard  to  the  regularization  parameter  in  elastic  net,
the search grid for alpha ranged from 0 to 1,  with a length
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of 15, and the search grid for lambda ranged from 0.0001 to
0.2, with a length of 5. �ose variables with non-zero coe�-
cients were retained for the purpose of model construction.

Prediction Model (XGBoost, random forest)

A�er the feature selection, we were able to employ
machine  learning  techniques  to  predict  the  survival  status
of  patients  with  gliomas.  We  chose  random  forest  as  our
�rst  prediction model.  Random forest  is  an  algorithm that
can  be  classify  as  bagging,  which  is  distinct  from  boosting
method.  Similar  to  XGBoost,  in  random  forest,  we  con-
structed  multiple  decision  trees  as  well.  In  boosting  meth-
ods,  the later learner depends on the result  of  the previous
learner, whereas in random forest, each decision trees are in-
dependent  from  each  other.  Each  decision  trees  from  ran-
dom forest will vote for a result, and the �nal output of the
random forest is the majority of votes from individual trees.
Generally, random forest is capable to process high dimen-
sion  data  without  dimension  reduction  and  feature  selec-
tion. Moreover, with Gini purity, it can also output the im-
portance of each variable. �e second algorithm applied in
this  study  is  XGBoost.  XGBoost  is  an  e�cient  gradient
boosting  decision  tree  (GBDT),  the  idea  of  boosting  is  to
compile  multiple  weak  learners  into  a  strong  one  to  im-
prove the prediction ability. Comparing to the general GB-
DT, XGBoost improves the performance by optimizing the
loss  function  from  �rst  order  Taylor  expansion  to  the  se-
cond order Taylor expansion and making use of the L2 regu-
larization to  simplify  and avoid over�tting.  �e evaluation
of the model performance was conducted using the receiver
operating  characteristic  (ROC)  and  area  under  the  ROC
curve (AUC) metrics. Additionally, ROSE was employed in
the  training  set,  comprising  both  LGG  and  GBM  patients,
to eliminate the in�uence of dataset imbalance and improve
model performance.

Statistical Analysis

All �gure plotting,  machine learning,  and statisti-
cal analysis were conducted using the R statistical comput-
ing  platform  (version  4.2.2).  �e  correlations  evaluated  in
the heatmap were all  quanti�ed using the Pearson correla-
tion coe�cient, with a signi�cance level of p < 0.05. A box-
plot was constructed to compare the gene expression di�er-
ence in GBM and LGG, with a Wilcoxon test (p<0.05) em-

ployed to this end. �e GO and KEGG enrichment analysis
were  performed  with  the  "clusterPro�ler"  package  in  R,
while  survival  analysis  was  conducted  using  the  "survival"
package in R.

Results

Correlation of Ferroptosis-related Genes

�e methodology  employed  in  this  study  is  illus-
trated  in  Figure  1.  Figure  2A  illustrates  the  heatmap  of  59
ferroptosis-related genes in GBM. All pairs with correlation
and a  p-value  of  less  than  0.05  were  presented.  In  general,
the majority of the pairs presented in the heatmap exhibited
a positive correlation. Figure 2B illustrates that the correla-
tion of each pair of ferroptosis genes in LGG exhibits a rela-
tively  distinct  pattern  compared  to  that  observed  in  GBM.
�e  number  of  pairs  with  correlation  and  a  p-value  less
than 0.05 in Figure 2B was less than in Figure 2A. Further-
more,  the  number  of  pairs  with  a  negative  correlation  was
similar to the number of pairs with a positive correlation in
LGG.  �e  Venn  diagrams  presented  the  exclusively  ex-
pressed mRNAs and lncRNAs, as well as the common mR-
NAs  and  lncRNAs  shared  in  GBM  and  LGG,  respectively
(Figure 2C-2D). Even with a more rigorous approach to �l-
tering ferroptosis-related mRNAs, the number of highly cor-
related mRNAs with  ferroptosis  genes  remains  substantial.
A total of 4704 mRNAs exhibited an absolute Pearson corre-
lation value of greater than 0.7 in GBM, while 719 mRNAs
demonstrated a similar correlation in LGG. �e number of
shared mRNAs was signi�cantly higher than the number ex-
clusively  expressed  in  GBM  (Figure  2C).  Conversely,  the
number of highly correlated lncRNAs was relatively low in
both  GBM  and  LGG.  Notably,  the  common  lncRNAs  no
longer comprised the majority of the ferroptosis-related ln-
cRNAs in LGG compared to mRNAs (Figure 2C-2D).

�e expression level discrepancy in each ferropto-
sis-related gene between GBM and LGG was illustrated in a
boxplot (Figure 3A). Among the 59 genes, �ve exhibited no
di�erential expression between GBM and LGG. Conversely,
32 of the 59 ferroptosis-related genes exhibited signi�cantly
elevated expression levels in LGG compared to GBM. A con-
siderable  number of  genes  exhibited high expression levels
in LGG, while 22 genes demonstrated higher expression lev-
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els  in  GBM  than  in  LGG.  Furthermore,  we  combined  the
clinical information of the patients with the di�erentially ex-
pressed genes in GBM and LGG (Figure 3B). In general, the

expression  of  ferroptosis-related  genes  in  the  two  cohorts
was di�erent, particularly when they were split into smaller
subgroups.

Figure 1: Work�ow of this study
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Figure 2: Correlation of ferroptosis-related genes in pairs and Venn diagrams for ferroptosis-related genes. (A-B) Heatmap of
the correlation of ferroptosis-related genes in GBM (A) and LGG (B), respectively. Only pairs with correlation and t-test with

p<0.05 were shown; (C) Venn diagram of mRNAs related to ferroptosis genes that the �ltering condition is |cor| > 0.7, p
<0.001; (D) Venn Diagram of lncRNAs related to ferroptosis genes that the �ltering condition is |cor| > 0.7, p < 0.01.

Functional Enrichment Analysis

By investigating exclusively expressed genes in two
distinct phases of glioma development, we are able to ascer-
tain  their  functional  roles  and  associated  biological  path-
ways.  In  the  GO  analysis,  a  signi�cant  proportion  of  the
genes  were  found  to  be  involved  in  mitochondrial-related
functions in mRNAs in GBM (Figure 4A). In the molecular
function section,  some genes  were found to be involved in
oxidoreduction  and  ubiquitin-related  functions.  While  the
majority  of  the  ferroptosis-related  mRNAs  in  LGG  were
shared with GBM, the functions of the exclusively expressed
mRNAs  in  LGG  were  distinct  from  those  of  the  genes  in

GBM  (Figure  4B).  �e  functions  in  the  biological  process
category were predominantly related to synaptic and neuro-
transmitter  transport,  a  pattern  that  was  also  observed  in
the  cellular  component  and  molecular  function  sections,
where  channel  activities  and  synaptic  and  neuronal  activi-
ties  were  similarly  prominent.  With  regard  to  the  enrich-
ment pathways in mRNAs in GBM, the majority of the path-
ways  were  found to  be  enriched  in  various  neural  diseases
(Figure  5A).  In  contrast,  in  LGG,  the  pathways  were  pre-
dominantly  enriched  in  multiple  signaling  pathways  and  a
range of  substance addictions,  such as  morphine addiction
(Figure 5B).



9

JScholar Publishers J Cancer Res �erap Oncol 2024 | Vol 12: 501

Figure 3: Gene expression di�erence of ferroptosis-related genes in GBM and LGG. (A) A boxplot demonstrates the gene ex-
pression level between GBM and LGG in each ferroptosis-related gene; (B). Heatmap of expression di�erence in GBM and

LGG combined with clinical information of patients.

Consensus Clustering of Glioma Patients and Clini-
cal Subtypes

It would be bene�cial to determine whether there
are any subgroups with di�ering survival rates, allowing for
a more in-depth examination of the condition and more ac-
curate  decision-making  when  managing  gliomas.  �e
"ConsensusClusterPlus"  package  revealed  that  the  optimal
clustering of patients with GBM was achieved with k=4 (see
Supplementary Figure 1A). However, there was a discrepan-
cy between the consensus CDF and the area under the curve

and the e�ect of subgroup splitting (Supplementary Figure
1B-C),  despite  the  evidence  of  a  signi�cant  di�erence
among subgroups (Supplementary Figure 1D).  Meanwhile,
the optimal number of subgroups in patients with LGG was
3 (Supplementary Figure 1E). �e e�ect of subgroup splitt-
ing was similar to that observed in GBM, whereby the sub-
groups  did  not  yield  favorable  outcomes  (Supplementary
Figure 1F-G).  Furthermore,  the subgroups in LGG did not
demonstrate  di�erences  in  survival  rates  (Supplementary
Figure  1H).
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Figure 4: Performed GO functional analysis on mRNAs from GBM and LGG. (A) Top: GO analysis on biological process on
ferroptosis-related mRNAs in GBM. A few of the biological processes were focused on mitochondrial functions. Middle: GO

analysis on molecular functions, and a great amount of functions were focused on oxidoreductase activities. Bottom: GO analy-
sis on cellular component functions, the main functions in this plot were involved with mitochondrial again; (B) Top: GO anal-
ysis on ferroptosis-related mRNAs in LGG. GO analysis on biological process that most functions were about chemical synap-
tic transmission. Middle: GO analysis on molecular functions, and a lot were chemical channel activities. Bottom: GO analysis

on cellular component functions, and many functions were about synaptic activities.

Despite  the  consensus  clustering  didn’t  show  the
survival di�erence among subgroups, we inspected the sur-
vival di�erences in clinical subtypes in both GBM and LGG
patients. Survival analysis was performed to assess the e�ect
of gender and age (divided into over 45 and under 45 cate-
gories)  in  survival  on  training  and  test  sets.  In  GBM  pa-

tients, the analysis showed no statistically signi�cant di�er-
ences  between  the  two  characteristics  (Supplementary  Fig-
ure 2A). In addition, we did the same analysis for LGG pa-
tients and found that there was no di�erence in survival be-
tween  men  and  women,  but  that  patients  in  the  two  age
groups had signi�cantly di�erent survival rates (Supplemen-
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tary Figure 2B).

Feature Selection and Prediction Model

�e process of feature selection was conducted us-
ing elastic net as the fundamental method, prior to conduct-
ing the survival analysis. �e progression of the search grid,
which was run using elastic net, and its results for mRNAs
in GBM are presented in Figure 6A. �e mixing percentage
was  plotted against  the  accuracy  for  di�erent  values  of  the

regularization  parameters  in  the  training  set.  In  general,
when  the  regularization  parameter  was  in  the  range  of
0.15-0.2,  the  highest  accuracy  was  observed;  conversely,
when the parameter was between 0.0001 and 0.05, the accu-
racy  was  observed  to  decrease  as  the  parameter  increased.
With  the  optimized  parameter  selected  using  elastic  net,  a
histogram of the variable importance in the model was ac-
quired, in which the importance is in descending order (Fig-
ure 6B).

Figure 5: KEGG analysis in GBM and LGG. (A) �e KEGG pathway enrichment analysis for exclusively expressed mRNAs in
GBM; (B) �e KEGG pathway enrichment analysis for exclusively expressed mRNAs in LGG.
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Figure 6: Parameters of feature selection using elastic net. (A) �e plot showed the changes in accuracy when the algorithm
took in di�erent values of regularization parameter where the blue dotted line represented a series of parameter that was equal-
ly cut between 1e-04 to 0.05, the same to all the other lines; (B) �e variable importance of the features selected by elastic net af-
ter we obtained the optimal value from previous plot. (C) �e forest plot of the 20 selected ferroptosis-related mRNAs and ran
them into survival analysis, only three genes showed survival related and both lncRNAs had HR less than 1; (D) �e plot of the
changes in accuracy when the mixing percentage changed at di�erent value of regularization parameters; (E) �e top 20 ferrop-

tosis-related mRNAs in LGG that were selected from elastic net, and ranked with variable importance; (F) �e two mRNAs
among the 20 selected variables that were survival related, and SYP had the HR less than 1 whereas the HR of PDCD1LG2 was

greater than 1.
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 �e  AUC  in  the  test  set  of  XGBoost  without  

theROSE  demonstrated  an  initial  increase,  followed  by  a  

de-crease,  and a  subsequent  period of  minor  �uctuation,  

ulti-mately reaching a stable AUC a�er 40 iterations. �e 

resultsfor  LGG exhibited  a  somewhat  disparate  pattern.  

�e areaunder  the  curve  (AUC)  of  the  XGBoost  training  

processcommenced at  a  relatively low value of  0.6 and 

reached itspeak around 20 iterations. In contrast, the AUC 

in the train-ing  set  with  ROSE  commenced  at  0.83  and  

reached  1  at  afaster rate. Nevertheless, the AUCs in the test 

sets exhibiteda  high  degree  of  intertwining  before  the  �rst  

20  iterations,and the AUCs in the test set with ROSE 

demonstrated con-sistently  lower  values  than  those  in  

the  test  set  withoutROSE  (Figure  8B).

followed  as  in  GBM,  resulting  in  two  plots  demonstra-

tingthe variable importance from random forest (Figure 

7D-E).Subsequently,  the  performance  of  the  random  

forest  wasevaluated  based  on  the  AUCs  obtained  from  

the  trainingand test  sets.  As with the model  performance 

in GBM, theAUC was 1.0 and 0.5 for the training and test  

sets,  respec-tively.  In  the  case  of  the  balanced  dataset  

produced  byROSE, the AUC in the training set was 

reduced to 0.83 dueto  the  decrease  in  the  proportion  of  

deaths,  whereas  theAUC in the test set was only increased 

by 0.01 in compari-son to the original dataset (Figure 7G).

  �e results of the model performance in XGBoost-

were signi�cantly superior to those of random forest. 

Uponcompletion  of  70  iterations,  it  was  observed  that  the  

AUCvalue  exhibited  a  gradual  increase  with  an  increase  

in  thenumber  of  iterations  in  the  training  set  for  GBM  

(Figure8A). A comparison of the training sets before and 

a�er databalancing  in  GBM  revealed  that  the  AUC  was  

0.82  beforeROSE  at  the  beginning  of  the  iteration.  

However,  a�erROSE, the AUC was already close to 0.9, 

and it reached itspeak  at  a  faster  rate  in  the  dataset  with  

ROSE  than  in  theone without.  Nevertheless,  in the AUC 

test set of XGBoostwith ROSE, the AUC decreased as the 

number of iterationsincreased.

 Following the reduction of the number of genes,-

survival analysis was conducted using the 20 selected 

genes,with the results displayed in a forest plot (Figure 6C). 

Mean-while, the plot demonstrating the optimized parame-

ter indi-cated that the algorithm reached its highest level of 

accuracywhen the regularization parameter was set between 

0.15 and0.2 (Figure 6D). Of the 20 selected genes with the 

highestvariable importance, a survival analysis was 

performed onthem. Among these genes, only two were 

found to be signi�-cantly related to survival (Figure 6E-6F). 

In addition to in-vestigating the mRNAs in gliomas, we have 

also selected fer-roptosis-related lncRNAs with elastic net 

(SupplementaryFigure 3). However, with the selected 

lncRNAs in elasticnet, none of the genes were found to be 

survival-related inboth GBM and LGG (Supplementary 

Figure 3C and 3F).

 Conversely, we employed a random forest 

ap-proach to forecast the algorithm's performance in 

predict-ing survival outcomes. �e variables that had been 

�lteredusing elastic net were then extracted and incorporat-

ed intothe random forest model. �e variable importance 

and Giniimpurity were subsequently displayed (see Figure 

7A). Fol-lowing the �tting of the genes into the random 

forest, the ac-curacy of the training set and test sets were 

presented (Fig-ure 7B). �e AUC from the random forest 

model was 1.0for the training set and 0.5 for the test set, 

which was an ex-ceptionally high value for the training set 

and a surprisinglylow value for the test set. During the analy-

sis, it was ob-served that the incidence of death among 

patients diag-nosed with glioblastoma (GBM) (77%) was 

signi�cantlyhigher than that of patients who survived 

gliomas (23%).�e discrepancy between the accuracy of the 

training setand test set was primarily attributable to the 

imbalanced da-taset inherent to the disease. To address this, 

we appliedROSE to obtain a relatively balanced data set. 

Utilizing thealgorithm, the AUC obtained from the random 

forest analy-sis of the balanced dataset was 0.84, although 

the AUC inthe test set remained 0.5 (Figure 7C).

 In the mRNAs in LGG, the same procedures were
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Figure 7: Performance of random forest in GBM and LGG for both training and test sets. (A) �e variable importance of the se-
lected genes from GBM, and we evaluated the importance on the metric of mean decrease accuracy and mean decrease gini; (B)

ROC of the random forest on training and test sets for GBM, the ROC for training set was in black, and ROC for the test set
was in blue; (C) ROC of the random forest a�er ROSE on training (black) and test (blue) sets; (D) �e variable importance of
the selected genes from LGG, and evaluated the importance on the metric of mean decrease accuracy and mean decrease gini;

(E) ROC of the random forest on training (black) and test (blue) sets, respectively; (F) ROC of the random forest a�er ROSE on
training (black) and test (blue) sets.
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Figure 8: AUCs on Xgboost algorithm in training and test sets before and a�er ROSE. (A) Using 20 genes in GBM that were se-
lected from elastic net, and put them into Xgboost. �e x-axis is the number of iterations and y-asix is the value of AUCs. Each

line represents the model performance on that dataset, the black and green curves represent the training and test sets before
ROSE, and the purple and blue curves represent the training and test sets a�er ROSE; (B) In LGG, we applied the 20 genes in

LGG selected from elastic net and ran the Xgboost, the performances of each group were shown in the plot.

Discussion

Ferroptosis is relatively new form of programmed
death  that  has  been  gradually  studied  since  2012  [48].  A
study  demonstrated  that  in  GBM,  LGG  and  non-tumor
groups,  a  substantial  number  of  ferroptosis-related  genes
were  di�erentially  expressed.  Furthermore,  a  prognostic
risk model was established to predict the survival of patients
with  gliomas,  and  the  risk  score  was  also  correlated  with
IDH mutation status. �is risk score proved to be an e�ec-
tive  estimator  for  predicting  immunotherapy  [48].  �is
study  explored  the  di�erential  expression  of  59  ferropto-
sis-related  genes  between  GBM,  LGG,  and  non-tumor  tis-

sues. Our investigation involved the identi�cation of the top
100 di�erentially expressed lncRNAs and mRNAs, exclusive
to GBM and LGG, and correlated with ferroptosis. Our �nd-
ings revealed that the majority of the 59 ferroptosis-related
genes  exhibited  higher  expression  levels  in  LGG  than  in
GBM.  �is  observation  provides  a  promising  foundation
for further investigation into the expression di�erences be-
tween these two levels of gliomas and the prospect of devel-
oping  targeted  therapies  against  LGG  and  GBM,  with  the
aim of achieving more favorable treatment outcomes.

A  comparison  of  the  expression  of  ferroptosis
genes in GBM and LGG revealed that over 50% of genes in-
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volved  in  ferroptosis  demonstrated  higher  expression  in
LGG compared to GBM, as  previously  indicated in the re-
sults section. �e most highly expressed gene in both GBM
and LGG was CRYAB. Prior studies have indicated that the
overexpression  of  CRYAB  correlates  with  tumor  progres-
sion  and  a  poor  prognosis  in  patients  diagnosed  with
ovarian  cancer  [49],  lung  cancer  [50],  and  breast  cancer
[51].  Another  study  reported  that  in  oligodendroglioma,
CRYAB  was  more  highly  expressed  in  astrocyte-like  cells
than  in  oligodendrocyte-like  cells  [52].  It  seems  plausible
that  the  elevated  expression  of  CRYAB  in  LGG  is  at-
tributable to the inherent heterogeneity of LGG and the like-
lihood  of  its  advancement  to  a  more  malignant  grade.  On
the other hand, among the ferroptosis genes that have high-
er  expression  in  GBM  than  in  LGG,  CD44  expressed  the
highest  level  in  GBM.  Moreover,  several  studies  have  de-
monstrated that the overexpression of CD44 correlates with
poorer prognosis in patients with gliomas [53,54].

A  growing  body  of  evidence  indicates  that  mito-
chondria play a pivotal role in ferroptosis through the depri-
vation of cysteine [55]. While some studies have indicated a
controversial  and  context-based  role  for  defense  mech-
anisms  in  ferroptosis  mitochondria,  other  studies  have
shown that a mitochondria-targeted antioxidant, MitoTEM-
PO, induces a protective e�ect [55-57]. �ese �ndings align
with our GO analysis of mRNAs in GBM, which revealed a
signi�cant enrichment of  biological  processes within mito-
chondrial activities. In the gene ontology (GO) enrichment
analysis of GBM, oxidoreductase activity was identi�ed as a
recurring  theme.  Additionally,  research  has  demonstrated
that oxidoreductases, such as glutaredoxin 2 (Grx2c), play a
role in facilitating glioma cell  migration and invasion [58].
However,  the  GO  analysis  of  LGG  did  not  exhibit  a  com-
parable pattern to that observed in GBM. Furthermore, the
role of mitochondria in ferroptosis has been predominantly
investigated  in  GBM.  It  can  be  postulated  that  the  regula-
tion  of  mitochondria  is  more  closely  associated  with  the
mechanism  of  ferroptosis  in  more  severe  glioma  cells
[59,60].

Additionally, amongst the three genes that exhibit-
ed survival-related characteristics in GBM, COX4IL belongs
to the family of cytochrome c oxidase (COX), which is locat-
ed within the respiratory chain of  mitochondria.  However,

the  gene  itself  has  seldom  undergone  extensive  investiga-
tion.  TRAPPC2L  is  a  component  of  the  transport  protein
particle complex and has been identi�ed in human substan-
tia neurons. However, there is a paucity of research on this
gene  in  gliomas  [61,62].  �e  two  survival-related  genes  in
LGG were SYP and PDCD1LG2. �e hazard ratio for SYP
was less than 1 in the survival analysis, whereas the ratio for
PDCD1LG2 was greater  than 1.  �e result  for  SYP,  with a
hazard ratio less than 1, indicated that patients with higher
SYP  expression  had  a  lower  risk  of  death  than  those  with
lower  SYP  expression.  In  addition  to  our  own  �ndings,
another study has also identi�ed PDCD1LG2 as a potential
biomarker for predicting the prognosis of IDH mutation sta-
tus in gliomas [63].

�e genes selected via elastic net were subjected to
analysis  using  random  forest  and  XGBoost.  �e  resulting
ROC is illustrated in Figure 7. Two algorithms were used to
predict the survival status of glioma patients; however, even
with data balancing using ROSE, the outcomes remain sub-
optimal, particularly in LGG. In general, XGBoost demons-
trated  superior  performance  compared  to  random  forest,
both with and without ROSE, particularly in the context of
GBM. It  would be bene�cial  to investigate further why the
performance  in  the  test  set  with  ROSE  was  less  favorable
than without data balance. A potential enhancement in the
predictive  e�cacy  of  the  model  could  be  accomplished  by
taking the intersection of the genes identi�ed by elastic net
and feature selection through random forest. �is could be
achieved  by  utilizing  the  variable  importance  as  a  metric.
Previous research has indicated that the regulation of a few
genes  may  exhibit  di�erential  patterns  at  varying  stages  of
gliomas.  However,  this  information  is  not  currently  avail-
able  within  our  data  set.  �e  availability  of  data  regarding
the stages of gliomas may have enabled the development of
a more speci�c prognostic model for GBM severity. �ere-
fore, integrating data from GEO is considered to be a signi�-
cant  step  towards  improving  the  model  performance  and
generalizing the �ndings.

It is recommended that future studies should also
aim to incorporate additional information on glioma stages
and  further  investigate  the  subtypes  of  gliomas,  including
1p/19q non-codeletion cases, isocitrate dehydrogenase (ID-
H) wild-type cases and mesenchymal subtypes. �is may fa-
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cilitate  the development of  more tailored and robust  prog-
nostic  models  for  GBM  severity.  Furthermore,  despite  the
evidence that XGBoost is more e�ective than random forest
in  GBM,  the  prediction  models  did  not  yield  optimal  re-
sults.  Furthermore,  it  would  be  bene�cial  to  explore  ad-
vanced  machine  learning  techniques  and  algorithms,  such
as  deep  learning,  as  these  may  o�er  promising  avenues  to
enhance the predictive capabilities of the model, ultimately
leading to better patient strati�cation and personalized treat-
ment strategies for gliomas.

Conclusion

Ferroptosis  is  relatively  a  newly  discovered  pro-
grammed cell death, and the relevant research especially in
gliomas are still ongoing. In our study, we pointed out that
the majority of the ferroptosis-related genes were higher in
LGG, and the future study could gather more clinical infor-
mation as the status of the progression to malignant glioma
in LGG and �nd the potential biomarker and therefore im-
plement  targeted  therapy  to  get  a  better  prognosis  for  pa-
tients.  We explored the  exclusively  enriched functions  and
pathways in GBM and LGG by �ltering out the exclusively
expressed genes in the two stages of gliomas. Although the
performance of prediction model was not ideal, but we test-

ed that  XGBoost  is  generally  a  better  algorithm in predict-
ing the survival status in GBM. With a more careful adjust-
ment  of  the  regularization  parameter,  a  model  with  better
prediction of  the survival  is  possible,  which could be a po-
tential prognostic tool for clinicians and researchers.
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Supplemental Figures

Supplementary Figure 1: Consensus clustering analysis in GBM and LGG. (A) According to the consensus clustering algo-
rithm, the patients in GBM were clustered into 4 groups; (B) and (F) With the plot of CDF under k=2 to 8, we were able to pick
the number of cluster between consensus index at 0.1 to 0.9. Ideally we tend to choose the number with the smallest di�erence
between the two consensus index cuto�; (C) and (G) Following the CDF plotted in B and F, each point in C and G represents

the area under the CDF at particular number of cluster. We usually pick the number a�er the sudden drop of the area from pre-
vious point, and the next k does not change much as the current number. In this case, we picked k=4 and k=3 for GBM and

LGG respectively; (D) and (H) �e Kaplan Meier curves of each class clustered by the algorithm, with overall survival on the y
axis and time by days, whereas only the clusters in GBM showed group di�erences (p =0.025).



19

JScholar Publishers J Cancer Res �erap Oncol 2024 | Vol 12: 501

Supplement Figure 2: Assessment of the di�erence in survival outcome between clinical subtypes in glioma patients. A). Com-
parison of the survival outcome of the di�erence in gender and age groups in the training and test sets in GBM patients, respec-
tively. Gender and age groups did not show survial di�erences in GBM patients. B). Comparison of the survival outcome of the
di�erence in gender and age groups in the training and test sets in LGG patients, respectively. Patients under the age of 45 have

a better survival rate than those over 45.
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Supplementary Figure 3: Parameters of feature selection using elastic net. (A) �e plot showed the changes in accuracy when
the algorithm takes in di�erent values of regularization parameter where the blue dotted line represent a series of parameter

that was equally cut between 1e-04 to 0.05, the same to all the other lines; (B) �e variable importance of the features selected
by elastic net a�er we obtained the optimal value from previous plot; (C) �e forest plot of the 20 selected variables and ran
them into survival analysis, none of the 20 genes showed survival related (p< 0.05); (D) �e plot of the changes in accuracy

when the mixing percentage changes at di�erent value of regularization parameters; (E) �e top 20 ferroptosis related lncRNAs
in LGG that were selected from elastic net, and ranked with variable importance. F). None of the 20 lncRNAs were signi�cantly

related to survival.
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