

Supplementary-Data

Patient Bone Marrow Aspiration to Explore the Cyclooxygenases (COXs) Involvement in Multiple Myeloma

Figure S1: Expressions of COX-1 and COX-2 proteins in U266 and RPMI-8226 cell lines upon treatment with mofezolac alone or in combination with bortezomib dexamethasone or thalidomide. Cells were incubated for 48 h with (+) or without (-) mofezolac (55 μ M in U266 and 70 μ M in RPMI-8226), dexamethasone (100 μ M both in U266 and RPMI-8226) or thalidomide (100 μ M both in U266 and RPMI-8226) used at different concentrations on the basis of their EC50 values. The cell homogenates (30 μ g protein) were applied to Western blotting. HEK-293 COX-1 and HEK-293 COX-2 were used as positive controls for COX-1 and COX-2 expression, respectively [34]. The protein level of β -actin was used as loading control. The experiments were repeated three times, and essentially the same results were obtained. Marker Biorad Precision Plus Protein[™] Dual Color Standards, 500 μ l #1610374

Figure S2: Antiproliferative activity of anti-MM drugs alone and in combination with COX inhibitors after 48h incubation time with NCI-H929 cells. Error bars represent mean \pm SD of three experiments in triplicate; one-way ANOVA followed by Bonferroni's post-hoc comparison test: p < 0.05 excepted for THA vs THA + ASA

©2020 The Authors. Published by the JScholar under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/ by/3.0/, which permits unrestricted use, provided the original author and source are credited.

Figure S3: Antiproliferative activity of anti-MM drugs alone and in combination with COX inhibitors after 48h incubation time with SK-MM-2 cell lines. Error bars represent mean \pm SD of three experiments in triplicate; one-way ANOVA followed by Bonferroni's post-hoc comparison test: p < 0.05 excepted for LEN vs LEN + MOF

Figure S4: Antiproliferative activity of thalidomide (100 μ M), lenalidomide (100 μ M), dexamethasone (100 μ M) and bortezomib (2 nM) alone or in combination with aspirin (75 μ M), celecoxib (75 μ M), mofezolac (75 μ M) or SC 560 (70 μ M) after 48h treatment of MM1R. Error bars represent mean ± SD of three experiments in triplicate; one-way ANOVA followed by Bonferroni's post-hoc comparison test: P<0.05 except for BRZ vs BRZ + ASA.

Figure S5: Antiproliferative activity of thalidomide, lenalidomide, dexamethasone (100 μ M) and bortezomib (3 nM) alone or in combination with aspirin (75 μ M), celecoxib (65 μ M), mofezolac (70 μ M) or SC 560 (40 μ M) after 48h treatment on RPMI-8226. Error bars represent mean ± SD of three experiments in triplicate; one-way ANOVA followed by Bonferroni's post-hoc comparison test: P<0.05

Figure S6: Antiproliferative activity of thalidomide (50 μ M), lenalidomide (50 μ M), dexamethasone (50 μ M) and bortezomib (7 nM) alone or in combination with aspirin (75 μ M), celecoxib (70 μ M), mofezolac (70 μ M) or SC 560 (50 μ M) after 48h treatment of KMS-12-BM. Error bars represent mean ± SD of three experiments in triplicate; one-way ANOVA followed by Bonferroni's post-hoc comparison test: P<0.05

Figure S7: Antiproliferative activity of thalidomide (100 μ M), lenalidomide (100 μ M), dexamethasone (100 μ M) and bortezomib (3 nM) alone or in combination with aspirin (65 μ M), celecoxib (75 μ M), mofezolac (55 μ M) or SC 560 (80 μ M) after 48h treatment on U266. Error bars represent mean ± SD of three experiments in triplicate; one-way ANOVA followed by Bonferroni's post-hoc comparison test: P<0.05 except for THA vs THA + ASA and LEN vs LEN + ASA

Figure S8: Antiproliferative activity of thalidomide (100 μ M), lenalidomide (100 μ M), dexamethasone (100 μ M) and bortezomib (8 nM) alone or in combination with aspirin (75 μ M), celecoxib (75 μ M), mofezolac (100 μ M) or SC 560 (50 μ M) after 48h treatment of MM1S. Error bars represent mean ± SD of three experiments in triplicate; one-way ANOVA followed by Bonferroni's post-hoc comparison test: P>0.05 except for THA vs THA + SC; BRZ vs BRZ + SC; BRZ vs BRZ + CEL; LEN vs LEN + SC and DEX vs DEX + SC

COX activity by PGE₂ and TXB₂ production measurement and effect on NF-kB activation

PGE₂ and TXB₂ biosynthesis was evaluated in supernatants of NCI-H929 cells at 48 hours incubation time in the presence of the different drugs. To evaluate how anti-MM drugs and COX inhibitors could affect PGE₂ and TXB₂ production and NF- κ B activation, cells were treated with bortezomib, dexamethasone and thalidomide alone or in combination with the highly selective COX-1 inhibitor mofezolac, or celecoxib, a selective COX-2 inhibitor. In resting cells, NF- κ B is sequestered in the cytoplasm in complexes with its endogenous inhibitor I κ B. In response to various stimuli, I κ B undergoes phosphorylation by I κ B kinases (IKK), ubiquitination, and subsequent proteasome-dependent degradation. Then, free NF- κ B heterodimer (p65/p50) rapidly translocate to the nucleus to initiate transcription activity by binding to regulatory κ B motifs on target genes [26,37]. To determine NF- κ B activation, p65 protein was extracted from NCI-H929 cell nucleus after treatments with the drugs. PGE2 and TXB2 biosynthesis, and NF- κ B activation in treated cells did not change respect to the untreated cells content (control) (Table S1).

Moreover, NF- κ B activation was evaluated in the seven MM cell lines with (+) or without (-) LPS (Table S2). In LPS-stimulated RPMI-8226, MM1R and MM1S an higher NF- κ B activation was registered, whereas in the other MM cell lines, NF- κ B activation did not changed in the LPS-treated counterparts.

Table S1: Percentage (%) effect of bortezomib (BRZ, 2nM), dexamethasone (DEX, 35 μ M), thalidomide (THA, 45 μ M), celecoxib (CEL, 70 μ M) and mofezolac (MOF, 75 μ M) on PGE2 and TXB2 biosynthesis, and NF- κ B (ng/ml) activation at 48 hours in NCI-H929 cells. Values are the means \pm SEM of three independent experiments carried out in triplicate; one-way ANOVA followed by Bonferroni's post-hoc comparison test: p > 0.05

	PGE ₂ (%)	TXB ₂ (%)	NF-κB (%)		
Control	65±1.2	51±2	43±1.4		
BRZ	65±1.3	40±0.7	44±0.1		
BRZ + MOF	59±1.4	47±1.2	33±1.4		
BRZ + CEL	56±0.2	46±1.5	30±1.8		
DEX	63±0.4	43±1.8	58±1.5		
DEX + MOF	60±0.5	42±1.9	30±1.8		
DEX + CEL	51±1.2	47±0.4	37±0.4		
THA	67±0.7	45±0.5	45±0.1		
THA + MOF	61±0.4	40±0.9	38±0.7		
THA + CEL	61±0.3	45±0.4	37±1.5		
MOF	60±1.1	46±0.1	46±0.7		
CEL	56±0.2	46±0.2	57±3.1		

Table S2: Percentage (%) NF-κB activation (ng/ml) at 48 hours with (+) or without (-) lipopolysaccharide (LPS) in seven different cell lines derived from human myeloma (NCI-H929, RPMI-8226, U266-B1, MM1R, MM1S, KMS-12-BM, and SK-MM-2). Values are the means ± SEM of three independent experiments carried out in triplicate; one-way ANOVA followed by Bonferroni's post-hoc comparison test: p < 0.05 excepted for KMS-12-BM and SK-MM-2

	NCI-	H929	RPMI-8226		U266-B1		MM1R		MM1S		KMS-12-BM		SK-MM-2	
LPS	-	+	-	+	-	+	-	+	-	+	-	+	-	+
NF-ĸB	43	68	58	100	44	69	50	100	40	100	100	100	42	40
	±1.2	±0.4	±0.3	±1.3	±0.4	±0.3	±0.2	±1.3	±0.7	±0.1	0.2±	±0.1	±0.4	±1.2

Submit your manuscript to a JScholar journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Timmediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Better discount for your subsequent articles

Submit your manuscript at http://www.jscholaronline.org/submit-manuscript.php