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Abstract

Penrose tilings do not repeat, making them a good example of an aperiodic pattern. This indicates that they lack translation-

al  symmetry.  This article provides a clearer and more rigorous definition of traditional Penrose tiles and proposes a cou-

pling construction process for infinitely scalable, defect-free Penrose tiles.
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Introduction

Penrose tilings do not repeat, making them a good

example  of  an  aperiodic  pattern.  This  indicates  that  they

lack translational symmetry. Recently the very original Pen-

rose tile was modified into a pentagonal shape simply by ad-

ding  some  tiles  out  ward  and  this  pentagonal  shape  com-

posed of three types of decagons: type-a , type-b and type-c

[1].  Further,  pentagonal  Penrose  tiles  can  be  infinitely  en-

larged without any defects and may not always be mirror or

fivefold  symmetrical  because  they  can  be  made  up  of  any

combination of the six different forms of decagons [2].

The purpose of the study is to adopt these pentago-

nal  shapes  (symmetrical  and  asymmetrical)  as  a  standard

paradigm  for  extending  Penrose  tiles  and  to  demonstrate

that various types of Penrose tiles (either symmetry or asym-

metry)  can  be  extended  infinitely  by  using  coupling  tech-

nique without generating defects.

It should be noted that when making the Penrose

tiles  to  infinity,  a  strict  new  rule  must  be  adhered  to  “No

bricks  can be missing from any decagon of  the pentagonal

Penrose tiles” and there is “no brick that does not belong to

the six one of the decagons. Other-wise, the tiles are consid-

ered as defective tiles.

Results and Discussion

As described, the ternary pentagonal Penrose tiles

fit well with the original Penrose tiles, as shown in Figure 2.

The ternary tile in Figure 2 can be simply converted into a

binary pentagonal  tile,  as  shown in Figure 3a,  by replacing

all c-type decagons (located at the edge of the tile) with b--

type decagons. The diagram in Figure 3a illustrates a unique

five-fold  symmetry  of  a  standard  pentagonal  Penrose  tile

with 5 decagons on each side. It shows that all decagons are

Type a and Type b and behave the same internally when ro-

tated by 72 degrees. Figure 3 (b,c,d,e) illustrates the creation

of  four  additional  asymmetric  binary  decagonal  pentagons

based  on  Figure  3a.  It  should  be  noted  that  all  five  of  the

pentagonal-shaped Penrose tiles in Figure 3 have the identi-

cal array of decagons on their edge-sides. The graph in Fig-

ure 3a shows how a symmetric Pentagonal can be extended

to an infinite binary pentagonal-shaped tile without any de-

fect  (five-fold  and  mirror  symmetry).  Whereas,  the  graphs

in  Figure  3  (b,c,d,e)  show  how  the  asymmetric  tiles  are

made  (not  necessarily  a  five-fold,  nor  mirror  symmetry)

without  any  defect.  For  simplicity,  some  extra-graphs  will

be  shown  here,  but  they  do  not  represent  the  results  of  a

symmetry graph.

Here is an illustration of how the coupling process

creates  a  defect-free  Penrose  tile  using the  diagram in  Fig-

ure 3a, and shows how easily the defects created by the cou-

pling process  (Ref.  3)  can be reversed.  As shown in Figure

4a,  we  can  perform  appropriate  mirror  coupling  on  the

edge along the center of the upper rightmost red star. There-

after,  appropriate  cropping from the Figure 4a can be per-

formed to  obtain  a  piece  of  a  mirror-symmetry  triangle  as

shown in  Figure  4b,  which  can  be  employed  as  one  of  the

side triangle of the next larger pentagon. Defective decagons

marked in dark grey can be replaced with type b or  type c

decagons,  making  the  tiles  defect-free.  In  this  case,  it  is

suggested to use type-b in order to maintain the binary pen-

tagonal  tile  shape.  This  cutting  triangle  is  mirrored  and

serves as the first base of the next larger round of pre-cou-

pled Penrose tiles.

Figure  5a  shows  the  results  of  tessellation  (splic-

ing) based on the graph (mirror symmetric triangle) in Fig-

ure  4b.  Combination of  degree  splices  include:  first  72-de-

gree rotation, second 144-degree, third 216 degree and final-

ly 288 degree rotation. Following the fifth round of splicing

(that is, after the first round of coupling), a larger pentagon

Penrose tile with ten decagons on each side is  constructed.

The  defects  created  during  the  tessellation  process  in  the

seam regions are shown in Figure 5, where all defective deca-

gons are clearly reversed to the type-b decagons. Using the

same procedure applied to the graph in Figure (5), after fur-

ther extended coupling, error-free binary Penrose tiles with

20 decagons on each side can be obtained, as shown in Fig-

ure 6.

Absolutely, these coupling defects (unwanted deca-

gons) created in the seam area can all be transformed into a

proper decagon (in this case in, Figure 5b, defect decagons

are all replaced by type-b decagon), resulting in binary Pen-

rose  tiles.  Using  the  same  procedure,  a  defect-free  binary

Penrose tiles (conventionally defined five-fold round the ori-
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gin center) of infinite size can be obtained.

Furthermore, a very different result obtained from

the same technique applied to the asymmetric tiles in Figure

3 (b,c,d,e) indicates that it is possible to create asymmetrical

Penrose tiles free of defects. Thus, this may lead to the crea-

tion of various forms of decagons. The process is described

as follows: First, use three different asymmetry Penrose tiles

coupling in x-direction to create the graph that is shown in

Figure  6a.  This  results  in  a  triangle  with  identical  shape as

the  graph  in  Figure  4c  with  the  ten  decagons  on  one  side

(for  construct  next  larger  pentagonal  Penrose  tiles),  as

shown in Figure 6b.  To create a  larger pentagonal  Penrose

tile with a highly complex situation in the center region (as

shown  in  Figure  6c),  rotationally  splice  this  triangle  four

(five) times.

Different  types  of  decagons  can  be  chosen  to

match-fit the center region. The results are shown in Figure

7(d),  with  the  binary  five-fold  Penrose  tiles  with  defects

marked in pink color. After much effort to eliminate all the

defects in Figure 7(d), the author discovered that there was

a single  unavoidable  defective  tile  (as  shown in Figure  7e).

At this point, the Penrose tile is asymmetrical and has type-

-c  and  type-e  decagons,  as  well  as  an  unavoidable  defect

marked in grey color. Nevertheless, Figure 7 (d) and (e) are

both Penrose tile graphs.

On the other hand, apply the previously described

procedure  to  the  Figure  7(e).  As  shown  in  Figure  8,  the

asymmetry  tile  can  be  extended  to  a  larger  pentagon-

al-shaped (five-fold symmetric) Penrose tiles that are defect

free. The author intended to leave two unfinished pentagon-

al  Penrose  tiles  as  shown  in  Figure  8a  and  8b  to  demons-

trate how difficult (or easy) and how systematical it is to ex-

tend a Penrose tile to infinity without any defect. Figure 8a

shows a symmetry Penrose tile with a complicated defect in

the center region, while Figure 8b shows an asymmetric tile

containing all six types of decagons.

Figure 1: Original Penrose tile
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Figure 2: Superposition coincidence of the original Penrose tile and a pentagonal shape trinary Penrose tile

Figure 3: Convert of trinary Penrose pentagonal tile in to binary Penrose pentagonal tile (a) symmetry, (b,c,d,e) asymmetry
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Figure 4: (a) The pentagonal shape Penrose tile with proper coupling on center of top right most (the far ) end right, (b) a sym-

metric triangle by appropriated cutting through the blue dark star in figure 4 (a), with ten decagons on one side.With a defec-

tive decade marked as dark grey

Figure 5: Further splice coupling of figure 4 (b) resulting a pentagonal shape Penrose tile with ten decagons per side
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Figure 6: Further coupling resulting in pentagonal shape five-fold symmetry Penrose tile with twenty decagons per side



7

JScholar Publishers J Chem Eng Catal 2024 | Vol 3: 102

Figure 7: (a) Appropriate coupling of three asymmetric Penrose tiles in x-direction. (b) Cutting through the center of blue star

in figure 7a to form an asymmetric triangle. (c) Five splice of rotation asymmetric graph is figure 7(b) to form a symmetric Pen-

rose tile with a complicated center region. (d) Center region of figure 7(c) is repaired to form a convention binary Penrose tile,

but with five defective decagons marked as grey color. (e) Asymmetry Penrose tile formed by splice of figure 7(a), containing

other types of decagons type-d and type-e as well as a seemly unavoidable defect marked as grey color
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Figure 8

Summary

In this  study,  a  pentagonal  Penrose tile  is  used as

example to demonstrate the simplest and easiest-to-unders-

tand coupling scheme.  Here,  a  defect  concept  for  coupling

different types of pentagonal Penrose tiles with a strict con-

dition is  introduced.  Finally,  the  defect  free  Penrose  tile  of

infinite  size  is  conceivable.  Since  the  pentagonal  Penrose

tiles should consist of at least of two types of decagons (any

combination of six types of decagons), they may not always
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be five–fold or mirror symmetry (ref).  Therefore,  it  can be

proven that when they are coupled together to form infinite

Penrose tiles with invisible boundaries, no potential defects

are created (but may create other types of decagons).
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