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Abstract

�is  study  explores  the  application  of  advanced  predictive  models  to  optimize  the  production  of  �berboard  from  agro-
waste biomass, speci�cally pumpkin stem �bers. �e research compares the performance of Response Surface Methodology
(RSM) and Adaptive Neuro-Fuzzy Inference System (ANFIS) for modeling weight loss during the alkali treatment process.
Key  variables,  including  retting  time,  NaOH concentration,  and biomass  weight,  were  varied  to  evaluate  their  impact  on
deligni�cation and �ber composition. Results from RSM showed strong predictive capabilities, with the interaction and qua-
dratic models achieving R2 values of 0.8522 and 0.8829, respectively. However, RSM exhibited limitations in capturing non-
linear relationships, particularly under extreme process conditions. Conversely, ANFIS demonstrated superior adaptability,
accurately  modeling  nonlinear  behavior  and  yielding  predictions  that  closely  matched  experimental  data,  particularly  in
complex scenarios involving high retting times and alkali concentrations. �e NaOH treatment improved the cellulose con-
tent of pumpkin �bers from 20.28% to 33.2%, while signi�cantly reducing lignin and hemicellulose levels. �ese changes en-
hanced the structural and thermal properties of the resulting �berboards. �is work highlights the potential of ANFIS as an
advanced tool for optimizing �berboard production from agro-waste biomass, while also emphasizing the complementary
role of RSM in initial parameter screening. �e �ndings support the development of sustainable and e�cient �berboard pro-
duction processes.
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Introduction

�e  growing  need  for  sustainable  materials  has
prompted signi�cant interest in utilizing agro-waste for the
production  of  engineered  wood  products,  including  �ber-
boards. Fiberboards are widely used in furniture, construc-
tion,  and  interior  design  due  to  their  a�ordability,  ease  of
processing, and desirable mechanical properties [1,2]. How-
ever, the increasing environmental concerns associated with
the depletion of natural wood resources and the disposal of
agricultural  residues  have  accelerated  the  exploration  of
agro-waste  as  an  alternative  raw  material  [3].  Among  the
various  sources  of  agro-waste,  pumpkin  stem  �ber  has
gained attention due to their abundance, renewable nature,
and potential to contribute to the circular economy.

Pumpkin  stem  are  agricultural  residues  typically
discarded  or  burned,  leading  to  environmental  pollution
and resource wastage [4,5]. However, this material possess-
es  intrinsic  properties  that  make  them  suitable  candidates
for �berboard production, including high cellulose content,
low density, and biodegradability. Utilizing such agro-waste
not  only  reduces  environmental  pollution  but  also  creates
value-added products that align with the principles of green
chemistry  and  sustainable  manufacturing  [6,7].  Despite
their  potential,  optimizing  the  production  process  and  en-
suring the quality of �berboards derived from agro-waste re-
main  challenges  requiring  robust  modeling  and  predictive
techniques.  Response  Surface  Methodology  (RSM),  Arti�-
cial Neural Networks (ANN), and Adaptive Neuro-Fuzzy In-
ference  System  (ANFIS)  are  widely  used  modeling  tech-
niques in material and process optimization. RSM is a statis-
tical tool that establishes relationships between process vari-
ables  and  output  responses,  enabling  the  identi�cation  of
optimal conditions [8,9]. ANN, on the other hand, leverages
machine  learning  to  model  complex,  nonlinear  relation-
ships  between inputs  and outputs  [10],  while  ANFIS  com-
bines  the  learning  capabilities  of  neural  networks  with  the
fuzzy logic approach to handle uncertainties and imprecise
data  [11,12].  Each  of  these  techniques  o�ers  unique
strengths, making them valuable for analyzing and predict-
ing the performance of �berboard production processes.

In recent years,  studies on the use of RSM, ANN,

and ANFIS for material development and process optimiza-
tion have demonstrated their  potential  in enhancing prod-
uct quality and minimizing resource consumption. Howev-
er,  a  comprehensive  comparison  of  these  techniques  for
modeling  �berboard  production  from  agro-waste  biomass
remains limited in the literature. �is study aims to address
this  gap  by  utilizing  pumpkin  stem �bers  as  raw materials
for  �berboard production and employing RSM, ANN, and
ANFIS  for  comparative  analysis  and  model  development.
�e research focuses on evaluating the mechanical and phys-
ical properties of the produced �berboards, as well as deter-
mining  the  predictive  accuracy  and  robustness  of  the  em-
ployed modeling techniques.

�e  speci�c  objectives  of  this  research  are  to:  (1)
investigate the suitability of  pumpkin stem �bers for �ber-
board  production,  (2)  analyze  the  in�uence  of  process  pa-
rameters  such  as  resin  content,  pressing  temperature,  and
pressing time on the quality of the �berboards, (3) develop
predictive  models  using  RSM,  ANN,  and  ANFIS,  and  (4)
compare the accuracy and e�ciency of these modeling tech-
niques  in  optimizing  the  �berboard  production  process.
�is study contributes to the existing body of knowledge by
providing  insights  into  the  comparative  performance  of
RSM,  ANN,  and  ANFIS  in  modeling  �berboard  produc-
tion.  �e  �ndings  are  expected  to  assist  researchers  and
manufacturers  in  selecting  appropriate  modeling  tech-
niques for optimizing processes involving agro-waste mate-
rials.  Additionally,  the  research  highlights  the  potential  of
utilizing  pumpkin  stem  �bers  as  sustainable  raw  materials
for  developing  high-quality  �berboards,  promoting  eco-
friendly  practices  in  the  wood  panel  industry.

Materials and Methods

3.1. Materials Collection and Preparation

�e  material  utilized  in  this  study  included
pumkin  stem.  Pumkin  stem  was  obtained  from  Eke  Awka
market in Awka South Local Government Area (6°12'25"N,
7°4'4"E),  in  Anambra  State.  �e  collected  materials  were
air-dried  for  approximately  12  hours,  depending  on  ambi-
ent temperature. A�er drying, they were cleaned, depithed,
and processed into �bers using an open-air retting method.
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Chemical Treatment of the Fiber

�e pumpkin stem �bers were shredded and treat-
ed through mercerization using NaOH. �is process aimed
to remove hemicellulose and lignin, which are potential con-
tributors to high water absorption in the �nished �berboard
[13]. A�erward, the treated �bers were neutralized in acetic
acid,  thoroughly  rinsed  with  water,  and  dried  under  sun-
light.

3.7.5 Production of Fibreboard

�e  production  of  the  �breboard  was  conducted
based on a  Design Expert  matrix,  varying parameters  such
as retting time, retting concentration and weight of biomass
(pumpkin  stem).  Silane-treated  pumpkin  stem  �bers  were
�rst  milled  and  then  sieved  through mesh  sizes  of  0.3mm,
0.6mm,  0.85mm,  1mm,  and  2mm.  A�er  sieving,  approxi-
mately  112.73g  of  the  0.3mm  silane-treated  �bers  were
weighed and added to a disc drum mixer. To the �bers, 9%
polymer,  0.5%  para�n  wax,  and  1%  ammonium  chloride,
based  on  the  oven-dried  weight  of  the  �bers,  were  intro-
duced into  the  mixer  and mixed for  15  minutes.  �e mix-
ture was then transferred into a mold and subjected to cold
pre-pressing at 1 MPa. A�erward, the mat was hot-pressed
under a pressure of 5 MPa, at a temperature of 160°C, for a
pressing time of 600 seconds.

Once  pressing  was  complete,  the  �berboard  was
trimmed to achieve the  desired length,  width,  and squared
edges. �e boards were then cut to the �nal dimensions and
conditioned at a relative humidity of 65% for two weeks.

Instrumental Characterization of the Fibreboard

X-ray  di�raction  (XRD)  was  used  to  assess  the
crystallinity  of  the  �breboard,  Scanning  Electron  Micros-
copy  coupled  with  Energy  Dispersive  X-ray  Spectroscopy
(SEM-EDX)  evaluated  surface  morphology  and  elemental
composition, and �ermogravimetric Analysis (TGA) mea-
sured  thermal  degradation  across  temperature  ranges.  �-
ese  techniques  provided  detailed  insights  into  the  �ber-
board’s structural, chemical, and thermal properties, essen-
tial  for  determining its  performance and suitability  for  ad-
vanced applications.

Prediction of % weight loss using RSM, ANFIS and
ANN, and Optimization with GA

�e methodology to predict the percentage weight
loss of �berboard involved the application of RSM, ANFIS,
ANN,  and  Genetic  Algorithms  (GA).  RSM  modeling  was
conducted using Design Expert Version 10.0.1, where a Cen-
tral Composite Design (CCD) was employed to evaluate the
e�ects  of  retting  time,  NaOH  concentration,  and  biomass
weight  on  weight  loss.  �e  model  established  interaction
and quadratic  equations to predict  responses and optimize
conditions.  ANFIS  and  ANN  were  implemented  using
MATLAB 15a. ANFIS combined fuzzy logic with neural net-
works to model nonlinear relationships in the dataset, while
ANN employed a feedforward architecture trained with the
backpropagation  algorithm  to  predict  weight  loss.  �e  da-
taset was divided into training (70%), validation (15%), and
testing (15%) sets for both models to ensure robust predic-
tions.  Genetic  Algorithm (GA),  also  executed in  MATLAB
15a,  was  utilized  to  optimize  the  prediction  models.  GA
�ne-tuned the parameters of ANFIS and ANN by mimick-
ing  evolutionary  processes,  including  selection,  crossover,
and mutation. �is integration enhanced the models’ accu-
racy in capturing complex dynamics, yielding improved pre-
dictive  performance  and  optimal  process  conditions  for
�berboard  production.

Results and Discussion

Characterization  of  Raw  and  Treated  Pumpkin
Stalk  Biomass

�e  characterization  of  raw  and  NaOH-treated
pumpkin  stalk  biomass  reveals  signi�cant  changes  in  its
chemical composition and physical properties, emphasizing
the  e�ectiveness  of  alkali  treatment.  According  to  Table  1,
Cellulose  content  increased  from  20.28%  in  the  untreated
�ber  to  33.2%  in  the  treated  sample.  �is  enhancement
highlights  the  removal  of  non-cellulosic  components,  such
as  lignin  and  hemicellulose,  thereby  exposing  more  cellu-
lose, which is crucial for applications like bio-composite re-
inforcement and bioethanol production. Lignin content de-
creased  from  28.89%  to  20.24%,  while  hemicellulose  con-
tent dropped sharply from 40.67% to 19.77%. �ese reduc-
tions con�rm the e�cacy of NaOH treatment in deligni�ca-
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tion and hemicellulose removal, resulting in a more puri�ed
�ber structure. Such modi�cations improve the �ber's com-
patibility  with  polymer  matrices  and  enzymatic  hydrolysis
processes. �e moisture absorption of the treated �ber signi-
�cantly reduced from 9.11% to 3.32%. �is reduction indi-
cates a  decrease in hydrophilic  components,  such as hemi-
cellulose, enhancing the �ber's dimensional stability and re-
sistance to environmental degradation. �e ash content also
declined from 8.63% to 4.98%, suggesting the removal of in-

organic  impurities.  Density  decreased  from  1.36  g/m3  to
1.01  g/m3,  re�ecting  structural  changes  induced  by  the  re-
moval of lignin and hemicellulose. �is reduction in density
could  enhance  the  �ber's  lightweight  properties,  making  it
suitable  for  applications  where  weight  reduction is  critical.
Hence, NaOH treatment signi�cantly improves the physico-
chemical properties of pumpkin stalk biomass,  making it  a
promising material for high-value applications in bio-based
industries [14-16].

Table 1: Characterization of raw and treated Pumpkin stalk biomass

S/No Test Untreated �ber NaOH treated

1 Cellulose (%w/w) 20.28 33.2

2 Lignin (Acid) (%w/w) 28.89 20.24

3 Hemicellulose (%w/w) 40.67 19.77

4 Moisture absorption (%) 9.11 3.32

6 Ash content (%) 8.63 4.98

7 Density g/m3 1.36 1.01

XRD Analysis of Pumkin Stem Fibres

�e X-ray di�raction (XRD) pattern of  untreated
pumpkin  �ber  (UPF,  Fig.  1.0)  reveals  a  predominantly
amorphous structure. A broad hump between 2θ ≈ 15°–30°
indicates  the  presence  of  amorphous  cellulose,  lignin,  and
hemicellulose, typical of raw plant-based biomass. �e lack
of  sharp  crystalline  peaks  con�rms  minimal  structural  or-
ganization, with a high content of lignin and hemicellulose
impeding the alignment of cellulose chains. �is disordered
structure results  in lower mechanical  strength and thermal
stability,  making  UPF  less  suitable  for  applications  requir-
ing  high structural  integrity.  However,  its  irregular  surface
features  and  functional  groups  may  enhance  its  potential
for  adsorption-based  applications.  In  contrast,  the  treated
pumpkin �ber (TPF, Fig. 2.0) exhibits a sharp peak at 2θ ≈
22°,  corresponding  to  the  (002)  plane  of  crystalline  cellu-
lose. �is peak re�ects a signi�cant improvement in structu-
ral  organization,  achieved  through  alkali  treatment.  �e
treatment  e�ectively  removes  lignin  and  hemicellulose,  as
evidenced by  the  reduced amorphous  background and en-
hanced  prominence  of  the  crystalline  peak.  �e  broadness
of the peak suggests a mix of crystalline and amorphous re-

gions,  with  the  treatment  increasing  the  cellulose  content.
�is improvement enhances TPF’s mechanical and thermal
properties,  making  it  ideal  for  applications  such  as  com-
posite  reinforcement  and  bioethanol  production.

SEM-EDX of Fibreboard from Pumkin

�e  Scanning  Electron  Microscopy  (SEM)  image
of  the  �breboard  produced  from  treated  pumpkin  �bre
(TPF) at 500x magni�cation reveals a compact and �brous
surface  with  minimal  irregularities.  �is  morphology  re-
�ects the structural  transformation of lignocellulosic mate-
rials a�er treatment, where the removal of lignin and hemi-
cellulose  enhances  the alignment and cohesion of  cellulose
�bers. �e smooth, dense surface indicates improved bond-
ing between �bers, contributing to the �breboard's mechani-
cal  robustness  and structural  integrity.  �e observed  com-
pactness  and  reduced  porosity  suggest  that  the  treatment
process  e�ectively  enhanced  the  �ber-matrix  interaction,
crucial for the material's strength and durability. Unlike un-
treated pumpkin stem, which typically shows fewer surface
modi�cations, the treated �breboard exhibits features opti-
mized  for  applications  requiring  mechanical  and  thermal
stability. �e absence of visible cracks or major defects high-
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lights the uniformity achieved during processing. �is struc-
tural organization and improved surface quality make the �-
breboard suitable for applications such as construction ma-
terials, composite reinforcement, and bio-based panels. �e
Energy-Dispersive X-Ray Spectroscopy (EDX) analysis com-
plements  the  SEM  �ndings  by  identifying  the  elemental
composition  of  the  biomass  (Table  2).  Carbon  dominates
the  structure,  with  a  high  atomic  concentration  of  53.70%
and a weight concentration of 25.80%, re�ecting the carbo-
naceous  matrix  characteristic  of  organic  materials.  Zinc

(16.76% weight) and yttrium (11.72% weight) contribute sig-
ni�cantly to the material’s overall mass, likely as functional
additives, residues from treatments, or doping agents for en-
hanced properties like thermal stability or catalytic activity.
Other elements, including calcium, sulfur, silicon, and chlo-
rine,  are present in moderate amounts and could originate
from  natural  components  or  processing  agents.  Trace  ele-
ments such as aluminum, magnesium, potassium, phospho-
rus, and sodium suggest inherent impurities or surface mod-
i�cations.

Figure 1.0: XRD graphs of UPF

Figure 2.0: XRD graphs of TPF
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Plate 1.0 SEM image of pumpkin stalk �berboard produced

Table 2.0: SEM-EDX for of pumpkin stalk �berboard produced

ElementNumber ElementSymbol ElementName AtomicConc. WeightConc.

6 C Carbon 53.70 25.80

30 Zn Zinc 6.41 16.76

39 Y Yttrium 3.30 11.72

20 Ca Calcium 4.80 7.69

16 S Sulfur 5.71 7.32

14 Si Silicon 5.67 6.37

17 Cl Chlorine 4.42 6.27

13 Al Aluminum 4.75 5.12

12 Mg Magnesium 4.61 4.48

19 K Potassium 2.39 3.74

15 P Phosphorus 2.53 3.14

11 Na Sodium 1.72 1.58

�ermogravimetric Analysis of Pumkin Fibreboard

�e TGA/DSA results of the �breboard produced
from pumpkin �bre reveal its thermal stability and decom-
position behavior.  Initially,  a  minor  weight  loss  occurs  be-
low  100°C,  primarily  due  to  the  evaporation  of  moisture
and other volatile compounds [17]. �is stage indicates the

hygroscopic  nature  of  the  lignocellulosic  material  used  in
the  �breboard.  A  signi�cant  weight  loss  is  observed  be-
tween 200°C and 400°C, which corresponds to the decompo-
sition  of  major  organic  components  such  as  hemicellulose
and cellulose. �e �rst sharp peak in the DSA curve in this
range  signi�es  the  thermal  degradation  of  hemicellulose,
which occurs at lower temperatures (200–300°C) due to its
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amorphous structure, and cellulose, which degrades at high-
er  temperatures  (300–400°C)  due  to  its  crystalline  nature.
Beyond 400°C, a slower and more gradual weight loss is evi-
dent, representing the degradation of lignin. �is phase ex-
tends  over  a  broad  temperature  range  of  400–600°C,  as
lignin  decomposes  more  slowly  due  to  its  complex  and
crosslinked structure. �e corresponding DSA curve in this
region  shows  a  less  pronounced  peak,  re�ecting  a  less  in-
tense  exothermic  reaction  compared  to  the  earlier  stages.

�e residual mass remaining beyond 600°C indicates the in-
organic  content,  such  as  ash  or  mineral  residues,  le�  a�er
the complete  decomposition of  organic  matter.  �ese resi-
dues  could  be  naturally  present  in  the  �bre  or  introduced
during  processing.  �e  thermal  stability,  indicated  by  the
onset of decomposition and the temperatures of signi�cant
weight loss, highlights the suitability of the pumpkin �bre-
board  for  applications  requiring  moderate  heat  resistance
and structural integrity [18].

Figure 3.0: TGA/DSA of Pumpkin �berboard

Response Surface Methodology

Table 3.0 demonstrates the e�ects of retting time,
NaOH  concentration,  and  biomass  weight  on  the  weight
loss of pumpkin biomass during alkali treatment. �e table
reveals  a  signi�cant  interplay among these  variables,  in�u-
encing  the  e�ciency  of  lignocellulosic  matrix  breakdown.
Retting time shows a clear trend. Longer durations (e.g., 12
days) yield higher weight loss,  with up to 98.48% observed
at  2.1  Mol/dm3  NaOH  and  70  g  biomass  (Std  4).  In  con-
trast,  shorter  retting  times  (4  days)  exhibit  reduced weight
loss, such as 68.46% for 0.9 Mol/dm3 NaOH and 130 g bio-
mass (Std 5). �is highlights that extended retting enhances
deligni�cation by allowing more time for the alkali to pene-
trate  the  matrix.  NaOH  concentration  signi�cantly  a�ects
deligni�cation  e�ciency.  Higher  concentrations,  like  2.1
Mol/dm3,  consistently  produce  greater  weight  loss  across
varying  biomass  weights.  For  example,  at  2.1  Mol/dm3,

weight loss reaches 92.1% at 100 g biomass and 8 days (Std
16), compared to only 73.75% at 0.5 Mol/dm3 (Std 15). Bio-
mass weight also plays a role. Lower weights (e.g., 50 g) facil-
itate better NaOH penetration, achieving higher weight loss
(e.g.,  92.58%  in  Std  17).  Conversely,  heavier  weights  (e.g.,
150 g) limit treatment e�ciency, as seen in Std 6 (63.03%).
Optimal conditions involve balancing these factors for e�ec-
tive deligni�cation and cellulose enrichment.

Analysis of Variance (ANOVA) with RSM models

Table 4 presents the ANOVA results for the inter-
action  model  of  pumpkin  stem  treated  �bre  with  NaOH,
providing insights into the statistical signi�cance of various
factors  a�ecting  the  process.  �e  high  R-squared  value
(0.8622)  indicates  that  86.22%  of  the  variability  in  the  re-
sponse variable is explained by the model [19,20], while the
adjusted  R-squared  (0.8187)  suggests  a  strong  �t  a�er  ac-
counting for model complexity. �e low mean square error
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(MSE)  of  15.4427  and  root  mean  square  error  (RMSE)  of
3.9297 further  con�rm the  model's  reliability  in  predicting
outcomes [21,22]. �e coe�cients and their associated t-val-
ues highlight the in�uence of individual and interactive fac-
tors.  Signi�cant  coe�cients  with  low p-values  (e.g.,  <0.05)
indicate their critical role in the process, such as the strong
negative impact of certain factors (e.g., -9.8444 with a t-val-
ue of -1.3983 and p-value of 0.1781) [23]. �is suggests that

speci�c interactions or individual e�ects signi�cantly in�u-
ence  lignocellulosic  breakdown  and  �ber  composition.
Overall,  the  model  reveals  the  combined  e�ects  of  retting
time,  NaOH concentration,  and biomass  weight  on weight
loss and cellulose yield. �e high model precision and signif-
icant predictors demonstrate the e�ectiveness of RSM in op-
timizing alkali  treatment conditions for improved cellulose
enrichment.

Table 3.0 Response Surface Methodology Result for Pumpkin treated with NaOH

Std A:Retting
time(days) B:Retting Conc(Mol/dm3) C:weight of Biomass(Pumpkin)(g) Wt loss(%)

1 4 0.9 70 80.68

2 12 0.9 70 92.9

3 4 2.1 70 89.58

4 12 2.1 70 98.48

5 4 0.9 130 68.46

6 12 0.9 130 63.03

7 4 2.1 130 74.14

8 12 2.1 130 76.03

9 4 0.91 70 78.65

10 12 0.91 70 94.56

11 4 2.1 70 78

12 12 2.1 130 91.56

13 1 1.5 100 70.09

14 15 1.5 100 84.85

15 8 0.5 100 73.75

16 8 2.5 100 92.1

17 8 1.5 50 92.58

18 8 1.5 150 63.98

19 8 1.5 100 82.04

20 8 1.5 100 79.38

21 8 1.5 100 82.01

22 8 1.5 100 84.32

23 8 1.5 100 82.01

24 8 1.5 100 80.76

25 8 1.5 100 81.26

26 8 1.5 100 82.2
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Table 4: ANOVA of Pumpkin treated with NaOH with interaction model

Coe�cient Square error T-values P-values Statistical parameters

94.1952 13.284 7.0909 0

R-sqr = 0.8622
Adj-R = 0.8187
mse = 15.4427
rmse = 3.9297

2.6236 1.1224 2.3376 0.0305

-9.8444 7.0401 -1.3983 0.1781

-0.2608 0.13 -2.0071 0.0592

0.7049 0.4929 1.4303 0.1689

-0.0259 0.0098 -2.6341 0.0163

0.1253 0.0658 1.9054 0.072

�e  ANOVA  results  for  the  quadratic  model  of
pumpkin treated with NaOH, as shown in Table 5, demons-
trate a higher predictive power compared to the interaction
model,  with  an  R2  value  of  0.8829.  �is  indicates  that
88.29% of  the  variability  in  the  response  variable  is  ex-
plained by the model. �e adjusted R 2 value of 0.8171 con-
�rms the model's robustness a�er accounting for the com-
plexity of additional quadratic terms. �e mean square er-
ror (MSE) of 15.5813 and root mean square error (RMSE)
of 3.9473 suggest an accurate prediction of experimental re-
sults.  �e  quadratic  model  includes  second-order  terms

(e.g., x1, x2, and x3), which allow for a more detailed repre-

sentation  of  the  nonlinear  relationships  between  retting
time, NaOH concentration, and biomass weight on the re-

sponse.  Coe�cients  with  low p-values,  such  as  x1  (p  =
0.0208), indicate their signi�cant contribution to the model

[24,25].  �e  strong  negative  coe�cient  of  x2  (-16.5381)
highlights the sensitivity of the process to NaOH concentra-

tion, while x3  (2.1166) indicates a parabolic e�ect.  Equa-
tions 1 and 2 summarize the interaction and quadratic mod-
els, respectively, capturing the interplay and curvature ef-
fects among variables. �ese models o�er a comprehensive
understanding of the process, enabling optimization of alka-
li treatment for enhanced cellulose yield.

Table  6  compares  actual  responses  with  predic-
tions  from  various  modeling  approaches:  interaction-pre-
dicted  (RSM),  quadratic-predicted  (RSM),  ANN,  and  AN-
FIS.  �e actual  responses,  ranging from 63.03 to 98.48,  re-
�ect  signi�cant  variability  in  observed  values.  Among  the
models, ANN predictions closely match the actual respons-
es, with minimal deviations in several runs, such as 1, 4, and
10. ANFIS performs well in certain cases but tends to overes-

timate values, particularly in run 9. �e RSM models, both
interaction and quadratic, show varying accuracy, with qua-
dratic predictions sometimes deviating more, such as in run
13, where the actual response is 70.09, but the quadratic-pre-
dicted value is 70.78. Interestingly, in runs 20–26, the predic-
tions from all models appear similar, suggesting limited vari-
ability  in  these  conditions,  making  model  discrimination
challenging.
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Table 5: ANOVA of Pumpkin treated with NaOH with quadratic model

Coe�cient Square error T-values P-values Statistical parameters

86.3852 17.2824 4.9984 0.0001

R-sqr = 0.8829
Adj-R = 0.8171
mse = 15.5813
rmse = 3.9473

3.6934 1.44 2.5648 0.0208

-16.5381 10.7779 -1.5344 0.1445

-0.0711 0.25 -0.2844 0.7798

0.6984 0.4951 1.4106 0.1775

-0.0253 0.0099 -2.5554 0.0212

0.1294 0.0663 1.9516 0.0687

-0.0698 0.0581 -1.2008 0.2473

2.1166 2.7904 0.7585 0.4592

-0.001 0.0011 -0.9056 0.3786

�e  Comparative  Analysis  Between  the  Actual  and
the Predicted

Figures 4.0 and 5.0 present weight loss percentages
across  multiple  runs,  comparing actual  values  with predic-
tions from two sets of models:  RSM (Interaction and Qua-
dratic)  and  ANN/ANFIS.  �e  RSM  models,  shown  in  Fig.
4.0,  evaluate  their  ability  to  replicate  actual  trends,  achiev-
ing R2 values  of  0.8522 (Interaction) and 0.8329 (Quadrat-
ic).  Both models  demonstrate  high predictive  accuracy but
with slight performance di�erences. �e Interaction model
(blue  line)  closely  follows  the  experimental  data  (black
dashed  line),  especially  during  moderate  �uctuations,
though it underestimates sharp peaks and overestimates val-
leys. �e Quadratic model (red line) provides smoother pre-
dictions,  which  reduce  noise  but  fail  to  capture  abrupt
changes, leading to greater deviations in regions with sharp
transitions.  �e Interaction model  marginally  outperforms
the quadratic model in handling dynamic changes, making
it  more  suitable  for  highly  variable  datasets.  In  Fig.  5.0,
ANN  (blue)  and  ANFIS  (red)  predictions  are  compared
against experimental data. ANN achieves a higher R2 value
of 0.9722 compared to ANFIS's  0.9557,  indicating stronger

overall  accuracy.  ANFIS  demonstrates  a  superior  ability  to
capture  nonlinearities  and  abrupt  �uctuations  in  the  da-
taset, particularly between runs 5–10 and 15–20, where pro-
cess  conditions  vary  signi�cantly.  �is  advantage  stems
from  ANFIS’s  hybrid  architecture,  which  combines  the
learning  ability  of  neural  networks  with  the  linguistic  rea-
soning of fuzzy logic, enabling it to adaptively model com-
plex,  nonlinear  relationships  and abrupt  transitions in sys-
tem  behavior.  In  contrast,  ANN  predictions  exhibit  a
smoother curve, which, while e�ective in capturing general
trends, tends to overlook sharp variations due to its reliance
on  continuous  activation  functions  and  gradient-based
learning that may smooth out local extremes. Toward the �-
nal runs; where the process conditions are less volatile, both
ANFIS  and  ANN  predictions  converge  and  align  closely
with the experimental data. �ese results indicate that while
ANN maintains stable performance under moderately vari-
able  conditions,  ANFIS  o�ers  enhanced  sensitivity  and
adaptability in highly dynamic or nonlinear scenarios. �is
highlights the importance of model selection based on data
complexity,  with  ANFIS  proving  more  suitable  for  sce-
narios involving intricate parameter interactions and sharp
response variations.
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Table 6: Actual and predicted response

runs Actual response Interaction predicted
(RSM) Quadratic predicted(RSM) ANN predicted ANFIS predicted

1 80.68 80.7532 80.5776 85.7574 80.68

2 92.9 92.3133 92.0509 87.098 92.9

3 89.58 82.8486 82.5736 83.9048 83.79

4 98.48 101.1757 100.7515 98.6119 98.48

5 68.46 65.6554 65.2272 68.4488 68.46

6 63.03 64.7835 64.5565 62.9811 63.03

7 74.14 76.7724 76.54 74.1258 74.14

8 76.03 82.6675 82.5739 83.8203 83.795

9 78.65 80.7706 80.569 85.8539 78.65

10 94.56 92.3871 92.0982 87.285 94.56

11 78 82.8486 82.5736 83.9048 83.79

12 91.56 82.6675 82.5739 83.8203 83.795

13 70.09 73.2345 70.7816 80.3236 70.09

14 84.85 88.5079 86.1004 84.8791 84.85

15 73.75 72.5464 75.6389 73.8089 73.75

16 92.1 89.196 92.3167 78.6165 92.1

17 92.58 94.8737 93.3312 92.3861 92.58

18 63.98 66.8687 65.3912 64.0099 63.98

19 82.04 80.8712 81.8612 81.8655 81.7475

20 79.38 80.8712 81.8612 81.8655 81.7475

21 82.01 80.8712 81.8612 81.8655 81.7475

22 84.32 80.8712 81.8612 81.8655 81.7475

23 82.01 80.8712 81.8612 81.8655 81.7475

24 80.76 80.8712 81.8612 81.8655 81.7475

25 81.26 80.8712 81.8612 81.8655 81.7475

26 82.2 80.8712 81.8612 81.8655 81.7475

Optimization of Weight Loss % of Pumkin stem Fi-
breboard

�e optimization of weight loss in �berboard pro-
duction from pumpkin stem �ber using Genetic Algorithm
(GA) was evaluated with three predictive models: RSM, AN-
FIS, ANN. Table 7 presents the comparative performance of
these  models  under  varying  conditions  of  retting  time,
NaOH  concentration,  and  biomass  weight.  RSM  predic-
tions align reasonably well with observed weight loss data in

simpler  conditions.  For  instance,  in  iteration  1,  RSM  pre-
dicts  64.56%  weight  loss,  closely  matching  the  observed
63.03%. However, as the conditions become more complex
(e.g.,  iteration  5  with  a  longer  retting  time  and  higher
NaOH concentration), RSM predictions deviate more signif-
icantly, such as predicting 56.43% weight loss compared to
the  observed  56.43%.  �is  highlights  RSM’s  limitation  in
capturing nonlinear interactions between variables. ANFIS,
optimized using GA, outperforms RSM across all iterations.
Its hybrid approach, which integrates fuzzy logic and neural
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networks, enables it to model nonlinear dynamics e�ective-
ly.  For  example,  in  iteration  5,  ANFIS  predicts  49.11%
weight  loss,  closely  approximating  the  observed  value  and
outperforming  RSM.  ANN,  another  GA-optimized  model,
also  shows  strong  predictive  capabilities,  though  slightly
less accurate than ANFIS in some iterations. In iteration 4,
ANN  predicts  51.32%  weight  loss,  which  is  slightly  lower
than the observed value and ANFIS’s prediction of 52.02%.
However, ANN remains a reliable tool, particularly in han-
dling moderate variability in process parameters. Generally,
ANFIS demonstrates superior accuracy and adaptability for
optimizing nonlinear systems [9,26,27], making it the most
e�ective  model  for  weight  loss  prediction.  ANN  follows

closely, while RSM is best suited for initial parameter screen-
ing. �e integration of Genetic Algorithm optimization en-
hances  all  models,  o�ering  robust  solutions  for  agro-waste
�berboard  production.  �e  choice  of  GA  over  other  opti-
mization techniques such as grid search, simulated anneal-
ing, or particle swarm optimization (PSO) was motivated by
its  robustness  in  navigating  complex,  multi-dimensional,
and nonlinear search spaces. GA excels in global optimiza-
tion and avoids local minima traps; a common issue in train-
ing  neural-based  systems  like  ANN  and  ANFIS.  Further-
more,  GA  requires  minimal  problem-speci�c  information,
making  it  highly  suitable  for  black-box  optimization  sce-
narios typical in empirical �berboard production processes.

Figure 4: Comparative analysis for weight loss (RSM)

Figure 5: Comparative analysis for weight loss (ANN and ANFIS)
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Table 7: Optimization of the RSM and ANFIS (quadratic model) using Genetic Algorithm

iteration A:Retting
time(days)

B:Retting
Conc.(mol/dm3)

C:weight of
Biomass(Pumpkin)(g)

Wt
loss(%)RSM

Wt
loss(%)ANFIS

Wt
loss(%)ANN

1 12 0.9 130 64.56 63.03 63.41

2 13.5 0.92 130 62.44 58.77 58.70

3 13.9 0.938 132 59.76 55.49 55.42

4 14.2 0.941 132 56.44 52.02 51.32

5 14.31 0.945 133 56.43 48.33 49.11

Conclusion

�is  study  highlights  the  e�ectiveness  of  predic-
tive  modeling  in  optimizing  �berboard  production  from
agro-waste  biomass,  using  pumpkin  stem  �ber  as  a  case
study. �e comparative analysis of RSM and ANFIS demon-
strated the strengths and limitations of each approach. RSM
e�ectively captured linear and interaction e�ects, achieving
reliable predictions with R2 values of 0.8522 and 0.8829 for
interaction  and  quadratic  models,  respectively.  However,
RSM showed limitations in handling nonlinearities, particu-
larly under extreme process conditions. In contrast, ANFIS
exhibited  superior  predictive  accuracy  and  adaptability  in
modeling  nonlinear  relationships,  closely  aligning with  ex-
perimental data in scenarios involving complex interactions
of  retting  time,  NaOH concentration,  and biomass  weight.
Its  hybrid  design,  combining  fuzzy  logic  and  neural  net-

works,  allowed  it  to  outperform  RSM  in  highly  dynamic
conditions.  �e  alkali  treatment  improved  the  chemical
composition of pumpkin �bers, increasing cellulose content
from  20.28%  to  33.2%  while  signi�cantly  reducing  lignin
and hemicellulose. �ese enhancements translated into im-
proved structural and thermal properties of the �berboards,
making  them  suitable  for  high-value  applications.  �is
work underscores the potential of ANFIS as a powerful tool
for optimizing agro-waste utilization while rea�rming RS-
M's value for initial parameter screening. �e �ndings sup-
port sustainable and e�cient production of bio-based �ber-
boards, contributing to eco-friendly industrial practices.

Declaration

All  authors  declare  that  they  have  no  con�icts  of
interest



14

JScholar Publishers J Chem Eng Catal 2025 | Vol 4: 103

References

1.         Jadhav A, Jadhav N, Annaldewar BJAiRNMfTS (2024)
Natural  Fiber-Based  Composites  and  �eir  Applications.
113-35.

2.         Olaiya BC, Lawan MM, Olonade KAJSAS (2023) Util-

ization of sawdust composites in construction—a review.  5:
140.

3.         Kumar J, Kumar P, Chaudhary VK (2024) Agro-waste

Materials Used for Producing Energy and Sustainability Appli-
cations: A Review on Waste to Energy. Paper presented at the
International Conference on Recent Advancements in Me-
chanical Engineering.

4.         Mohammed AA, Hasan Z, Omran AAB, Kumar VV,
Elfaghi AM, Ilyas R, Sapuan SJP (2022) Corn: its structure, po-

lymer,  �ber,  composite,  properties,  and  applications.  14:
4396.

5.         Mokashi A, Shah P, Sarak P, Saravalakar S, Upare S,

Patil P, Shivane B (2025) Production of pulp and paper from

corn husks. Paper presented at the AIP Conference Proceed-
ings.

6.         Chukwuemeka JM, Abonyi MN, Nwabanne JT, Igbok-
we PK (2025) Modeling and Optimization of Fibreboard Pro-
duction from Corn Husk using Response Surface Methodolo-
gy. UNIZIK Journal of Engineering and Applied Sciences, 4:
1920-33.

7.         Sharma N, Allardyce B, Rajkhowa R, Adholeya A,
Agrawal RJFiPS (2022) A substantial role of agro-textiles in

agricultural applications. 13: 895740.

8.         Rashid U, Rehman HU, Mustafa MRU, Hazmi B,
Khurshid H, Ahmad J, Yu JJNJoC (2025) Comprehensive op-
timization study for  the methanolysis  of  Linum usitatissi-
mum oil using response surface methodology and arti�cial
neural network.

9.         Sadeghpour A, Ozay GJAJfS, Engineering (2024) In-
vestigating the Predictive Capabilities of ANN, RSM, and AN-
FIS  in  Assessing  the  Collapse  Potential  of  RC Structures.
1-22.

10.         Aljuaydi F, Behera B, Elshewey A, Tarek ZJAM, Sci-
ences I (2024) A Deep Learning Prediction Model to Predict

Sustainable Development in Saudi Arabia. 18: 1345-66.

11.         Abonyi MN, Nwabanne JT, Ohale PE, Nwadike EC,
Igbonekwu LI, Chukwu MM, Engineering E (2023) Applica-
tion of RSM and ANFIS in the optimal parameter evaluation
for crude oil  degradation in contaminated water amended

with PES. 8: 100483.

12.         Sagar YA, Reddy MSRL, Shilpa S, Jyothi N, Velivela
A, Rao AN (2025) Neuro-Fuzzy Systems: Neural Networks

and Fuzzy Logic Integration in So� Computing. In Cybernet-

ics, Human Cognition, and Machine Learning in Communica-
tive Applications, 39-49.

13.         Gürsoy S, Ayrilmis NJF (2023) E�ect of Lignin Modi-
�cation of Recycled and Fresh Wood Fibers on Physical, Me-

chanical, and �ermal Properties of Fiberboard.  14: 2007.

14.         Hurtado-Figueroa O, Varum H, Prieto MI, Amaya
RJG, Escamilla ACJH (2025) �e Alkaline Treatment and its
In�uence on the Physicomechanical Properties of Plantain
Pseudostem Fibers-A Comparative Study of Treated and Un-
treated Fibers.

15.         Shah AA, Seehar TH, Sharma K, Toor SS (2022) Bio-

mass pretreatment technologies. In Hydrocarbon biore�nery,
203-28.

16.         Shahabazuddin M, Chandra TS, Meena S, Suku-
maran R, Shetty N, Mudliar SJBt (2018) �ermal assisted al-
kaline pretreatment of rice husk for enhanced biomass decon-
struction and enzymatic  sacchari�cation:  Physico-chemical

and structural characterization. 263: 199-206.

17.         Volpe V, Pantani RJPC (2025) Natural �ber‐rein-
forced light composites for the automotive industry.

18.         Deshmukh M, Yadav MJB (2025) Optimizing �er-
mal E�ciency of Building Envelopes with Sustainable Com-

posite Materials. 15: 230.

19.         Kanjilal R, Saenz JE, Uysal IJPB, Technology (2025)
Large-scale data-driven uniformity analysis and sensory pre-

diction of commercial banana ripening process. 219: 113203.



15

JScholar Publishers J Chem Eng Catal 2025 | Vol 4: 103

20.         Shanmugavalli M, Ignatia KMJJRPoE (2025) Compar-
ative  Study among MAPE,  RMSE and R Square  over  the
Treatment Techniques Undergone for PCOS In�uenced Wo-

men. 19: E041223224190.

21.         Ahmed Y, Dutta KR, Nepu SNC, Prima M, AlMoha-
madi H, Akhtar PJRiE (2025) Optimizing photocatalytic dye
degradation: A machine learning and metaheuristic approach

for  predicting  methylene  blue  in  contaminated  water.  25:
103538.

22.         Mallick J, Alqadhi SJUC (2025) Explainable arti�cial
intelligence  models  for  proposing  mitigation  strategies  to
combat urbanization impact on land surface temperature dy-

namics in Saudi Arabia. 59: 102259.

23.         Abonyi MN, Anıagor CO, Menkiti MCJSJoE, Sci-
ences N (2020) Statistical  modelling of  the adsorptive de-
phenolation of  petroleum industry  wastewater  using ionic

liquid treated clay. 38: 1099-112.

24.         El Azhari H, Cherif EK, El Halimi R, Azzirgue EM,
Ou Larbi Y, Coren F, Salmoun FJS (2024) Predicting the Pro-
duction and Depletion of Rare Earth Elements and �eir In-
�uence on Energy Sector Sustainability through the Utiliza-
tion of  Multilevel  Linear  Prediction Mixed-E�ects  Models

with R So�ware. 16: 1951.

25.         Xv Y, Xiao B, Wei Z, Cao Y, Jiang Q, Li F, Xiao
MJAR  (2025)  Interpretable  CT  Radiomics-based  Machine
Learning Model for Preoperative Prediction of Ki-67 Expres-
sion in Clear Cell Renal Cell Carcinoma.

26.         Eliwa EHI, El Koshiry AM, Abd El-Hafeez T, Omar
AJIJoIS (2024) Optimal Gasoline Price Predictions: Leverag-

ing the ANFIS Regression Model. 2024: 8462056.

27.         Ulama BSS, Hibatullah F, Habibi MR, Intelligence
MJAC, Computing S (2024) Comparative Analysis of ANFIS

and State‐ANFIS for Forecasting Cooking Oil Prices Based

on  Processed  Palm  Oil  Yield  (Crude  Palm  Oil).  2024:
3804265.



16

JScholar Publishers J Chem Eng Catal 2025 | Vol 4: 103


