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Abstract

Survival analysis is a statistical method for modelling the probability that a subset of a given population will survive past a
certain time. In the context of HIV, this probability would represent the treatment failure. However, Frequentist methods
dominated the survival analysis in the 20th century but the introduction of the Bayesian methods in the last decades it has
been known to su�er from lack of use of probability statements in the interpretation of results.

In this study, we used dataset of HIV naïve patients to validate a Bayesian methods of survival analysis and compared the re-
sults to frequentist methods. Our analysis compares (i) calculation of probabilities of treatment failures of ARV combina-
tions 1 and 2, (ii) tests for a di�erence in the survival experience of two combinations in the treatment of HIV, (iii) analysis
of the Cox Model with Covariates.

Across the data set, the Bayesian methods produced the probabilities of treatment failures for the �rst baseline ARV combi-
nations as; 0.04124, 0.01034, 0.02973, 0.08952, 0.03765 and 0.03596 for combinations 1, 2, 3, 4, 5 and 6 respectively. While

the likelihood ratio test of 3.676 and some 1 of 9.885 with credible interval of -0.5628 and 19.62 means HO of no signi�cant
di�erence between combinations was retained as the credible interval included zero. While the frequentist methods gave the

log-rank value of 2.788 and P-value of 0.248 which means HO is retained. �e Bayesian methods gave an overall HR of
0.8916 and Beta of -0.134 for combination 1 versus combination 2 means the risk of combination 1 is higher than that of
combination 2. While the Frequentist method do not give an overall measure of risk.
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open access article published by Jscholar Publishers and distributed under the terms of 
the Creative Commons Attribution 4.0 International License, which permits 
unrestricted use, distribution, and reproduction in any medium, provided the original 
author and source are credited.
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�e study,  showed that  Bayesian methods is  a  better  option in survival  analysis  over  traditional  frequentist  approach,  al-
though both methods yields similar results. However, the outlined Bayesian framework provides several bene�ts and uses
data  more  e�ciently.  It  is  suitable  for  analysis  of  rare  diseases  and  outbreak  of  pandemics  as  sample  sizes  are  normally
small, also a better option for analysis of HIV data as HIV data is hidden due to stigma. It provides a natural and principled
way of combining prior information with data, within a solid decision theoretical framework.
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Abbreviations

ARV:  Antiretroviral;  ART:  Antiretroviral  �erapy;  CD4 count  Di�erentiation;  EFV:  Efavirenz;  FTC:  Emtricitabine;  HIV:
Human Immunode�ciency Virus: HIV Drug Resistance; MAP: Maximum a Posterior; MCMC: Markov Chain Monte Car-
lo; TDF: Tenofovir; TDRMs: Transmitted Drug Resistance Mutation strains; RNA: Ribonucleic Acid.

Background

Survival  analysis  is  a  statistical  method  for  mod-
elling the probability that a subset of a given population will
survive  past  a  certain  time.  In  the  context  of  cancer,  this
probability would represent a recurrence of  tumour,  or re-
mission (i.e. being disease-free) [1]. In the case of HIV, this
is the probability of treatment failure and the e�ect of treat-
ment outcome due to patients’ covariates which are of great
importance [2]. �e comparison between the two methods
in terms of the coverage performance of the con�dence and
credible intervals, the frequentist methods exhibited strong
under coverage, whereas the Bayesian credible interval per-
formed as desired with a slight advantage over the Frequen-
tist methods in terms of interval length [3-6].

On comparison the two methods on the results ob-
tained  in  survival  analysis,  it  was  observed  that  the  results
were similar although the Bayesian methods had a slight ad-
vantage over the frequentist methods. �ere was no signi�-
cant di�erence in survival  predictions.  However,  the Baye-
sian methods provides more bene�ts when applied to para-
metric survival analyses, uses data more e�ciently, is capa-
ble  of  considerably  shortening  the  length  of  clinical  trials,
and provides a richer set of inferences [7,8].

On  comparing  the  two  methods,  the  Bayesian
methods are a better option in survival analysis of rare dis-
eases were the sample size is small. Also a Bayesian predic-
tive probability can be designed to provide an analysis with

any desired frequency including continuous assessment af-
ter each patient is observed [9-11].

Basic concept of Bayesian methods is given with re-
sults  and then survival  analysis  is  also carried out  with the
Frequentist approach using nonparametric methods and re-
sults compared for the �rst base line regimen of ARV drugs.
�e objective of  this  article  was to critically  review the use
and reporting of Bayesian methods compared to frequentist
approach in survival analysis.

Methods and Materials

Study Design and Study Site

�e study was partitioned into two parts. �e �rst
part  of  the study involved the total  number of  newly diag-
nosed HIV individuals initiated with ARV drug during the
year 2016. �is dataset was used to calculate the probability
of  treatment  failure  of  the  �rst  and  second  baseline  regi-
mens  using  the  Beta-Binomial  hierarchical  model.  �e  se-
cond part of the study was a retrospective study which was
conducted from January 2016 to December 2016 involving
one  hundred,  and  seventy-four  (174)  randomly  selected
HIV-positive patients initiated with the antiretroviral thera-
py in Livingstone district health centres, Southern Province,
Zambia. �e study participants were selected from a pool of
adult HIV patients who live in the Livingstone district. �e
extracted data from patients’ �les consisted of two groups of
87 subjects  in  each combination.  �e method used for  ex-
traction of data included the covariates of each patient such
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as:  regimen  given,  outcome  of  the  treatment,  gender,  age
CD4 count and weight were obtained every 12 weeks for 86
weeks. �e dataset from these two groups was used to deter-
mine whether  there  was  any di�erence in e�cacy between
the two combinations and the e�ects of covariates on indivi-
duals initiated with ARV drugs.

�e survival probability was determined by the Ka-
plan  Meier  survival  method  for  frequentist  approach.  Cox
and Beta-Binomial for Bayesian methods were used to deter-
mine predictors of treatment failure.

Bayesian Approach

�e Bayesian method begins with a sampling mod-

el for the observed data y= (y1.…  ,yn) given a vector of un-

known parameters ϑ.  It  shows this  sampling model as a

probability distribution f (y|ϑ). We view it as a function of ϑ

and not of y; it is called the likelihood and written as L (ϑ:

y). Note that L (ϑ: y) need not be 1 and may not be �nite.

Given any data value y, it is possible to �nd the value ϑ that

maximizes the likelihood function, that is, ϑ =arg max L (ϑ:

y) called the maximum likelihood estimate (MLE) for ϑ. In

the Bayesian perspective, ϑ is an unknown random quanti-

ty. We call this a probability distribution for ϑ that sum-
marizes any data y, called the prior distribution. Just like the

likelihood has a parameter ϑ, the prior distribution has a pa-
rameter η called; hyper-parameter. Let us assume that the

hyper-parameter η is known and write the prior as π (ϑ) � π

(ϑ |η). We then base inference about ϑ on the posterior dis-
tribution given by.

�e  Bayesian  statistical  approach  was  adopted  in
analysing the data.  By using the fundamental  properties  of
conditional  probability,  the  posterior  distribution  in  equa-
tion (1.1) was calculated using a Beta-Binomial hierarchical
model.

Let the evidence Yi (i =1, 2,…, N) be independent
and identically  distributed  from a  binomial  distribution,

yi~bin (ni, ϑi). Suppose ϑi (i=1, 2, N) are parameters govern-
ing the data generating process is exchangeable from a stan-

dard population with Beta distribution, ϑi ~Beta (a, b) gov-

erned by hyper parameters, (a, b) ~ ϕ (a, b), the ϑi and ϕ (a,

b)  are  random  parameters  where  a  and  b  are  assumed

known. Let p be a generic symbol for a density function.

Consider a likelihood function p(yi| ϑi, ϕ ), a prior distribu-

tion p (ϑi |ϕ) and a hyper prior distribution p(ϕ) which pro-

duce the joint posterior distribution p(ϑi, ϕ| yi,. we use a Be-
ta-Binomial hierarchical model to estimate the probability
of treatment failure of the ARV drugs combination of the
�rst-  and second-line  regimens.  Hierarchical  models  are
those with a hierarchical structure to the parameters and po-
tentially to the covariates if the model is a regression model.
�e models are useful because they allow for the modelling
of interactions between observed variables through the use
of latent variables.

�e  Beta-Binomial  hierarchical  model  provides
the  joint  posterior  distribution  as

Which is proportional to the product of the likeli-
hood  function,  the  prior  distribution  and  the  hyper  prior
distribution,  ignoring  the  constant  denominator  in  equa-
tion (1.2).  �e use of the hyper prior distribution provides
more  information  leading  to  opinions  that  are  more  accu-
rate on the behaviour of a parameter.

Consider  the  probability  of  a  patient  switching

from  the  �rst-line  treatment  with  ϑi,  as  the  probability  of
the virological failure for combination i is the quantity of in-
terest in the analysis. �e complement of this probability is
the  kernel  probability  of  a  patient  remaining  on  the  �rst--
line regimen. We derive a joint probability model by com-
bining the prior distribution Beta (a, b), the likelihood func-
tion  p  (y_i  |ϑ_i,ϕ)  and  the  hyper  prior  distribution  p  (ϕ).
�us from the full model,
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From equation (1.3), we recognise that

Equation  1.4)  is  an  interplay  between the  data  y1
and the hyper parameters a and b in forming the posterior

distribution where for each P (ϑi|yi,a,b)α ϑi  
a+yi-1 (1-ϑi)

b+ni-yi-1.

�us  the  population  of  ϑi
'
S  has  ϑi||yi  a,b~Beat(a+yi,  b+ni-

yi)where (a + y1) and (b + n1 + y1) are the posterior hyper
parameters.

Bayesian Computation

�e most common estimation algorithm in Baye-
sian methods is based on Markov Chains Monte Carlo (M-
CMC) sampling technique. MCMC is a unique method for
estimating  by  simulation  the  expectation  of  a  statistic  in  a
complex  model.  Successive  random  selections  form  a
Markov  chain,  and  the  stationary  distribution  is  the  target
distribution of the simulations. Instead of solving the com-
plicated  integral  in  equation  (1.1)  analytically,  the  MCMC
algorithm draws samples and computes expectations to pro-
duce a posterior distribution P (ϑ|y) of the quantities of in-
terest.  Several  standard  algorithms  exist  for  carrying  out
MCMC,  which  converges  to  a  target  distribution  such  as,
Metropolis  (1953)  &  Hastings  (1970),  GIBBS  Sampling,
Gemman & Gemman (1984), Gelford and Smith (1990) and
Casella & George (1984) produces a Markov Chain by selec-
tion from complete conditional distributions. �e two stan-
dard  algorithms  are  GIBBS  Sampler  (Gelford  and  Smith,

1990)  and  the  Metropolis-Hastings  (Hastings,  1970,
Metropolis  et  al.,  1953).  When  numerically  estimating  the
normalisation constant, o�en the integral is of high dimen-
sion.  Gelford  and  Smith  (1990)  showed  that  the  joint  esti-
mates could be obtained by sequentially estimating each pa-
rameter while holding all  others constant.  �e distribution
of  a  parameter  holding  all  other  parameters  constant  is
called  full  conditional  distribution.  When  sampling  from
full  conditional  distribution,  the  parameters  can  be  drawn
directly. Otherwise, the parameters can be drawn indirectly
using adaptive rejection sampling (Gilks and Wild, 1992) or
the Metropolis-Hastings sampler methods [12].

A Markov Chain is  formed by a sequence of  ran-
dom variables ϑ(0),  ϑ(1),  ϑ(2),…., ϑi+1~ p(ϑ|ϑi) the proba-
bility  that  a  patient  is  on  second  baseline  treatment  given
that  they were in the �rst  baseline treatment.  �is satis�es
the Markov Chain properties of periodicity and irreducibili-
ty,  but  the  process  is  not  reversible.  �is  is  conditional  on
the value of ϑ (i), ϑ (i+1), is independent of ϑ (i-1)…ϑ(0).

Drawing samples from the link quantity of interest
for  ϑ  ,  such  as  (ϑ1(1),…,  ϑk(1)),  (ϑ1(2),…,  ϑk(2)),…,
(ϑ1(N),…, ϑk(N)) ~p(ϑ|y), by drawing samples until the pa-
rameter  convergence  to  a  distribution  called  the  marginal
posterior p(ϑ1|y), which implies that
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�is  is  called  Monte  Carlo  integration.  Using  the
GIBBS sampling algorithm for MCMC sampling,  the exact
simulation can be obtained in the following manner:

Let a vector of unknown consists of k sub-compo-

nents as ϑ= ϑ1,…..,ϑk, start with an arbitrary starting value,

say (ϑ1
0, ϑ2

0,…., ϑk
0) and t = 1,2,….,T perform the following

steps:

�e conditional distributions depend on complete conditions as parameters rely on these conditions ϑ (n) and pro-
vide a Markov Chain with a target distribution that expresses uncertainty ϑ. �e sampler moves from the starting values to the
posterior distribution and then fully explores that distribution. �e draws are independent of the starting value when the �rst n
iterations, known as the burn-in period, are discarded. �e burn-in allows quick exploration of the posterior distribution. �e
subsequent  draws  estimate  the  posterior  distribution and calculate  the  quantities  of  interest  [13,  14].  Some theorems can be
used to prove that chains converge to a limit as N→∞.

�eorem of Weak Laws of Large Numbers

If for y1, y2,…yn there are independent observations of the same random variables, all with mean µ, 

for every � � 0, then p(|Mn-µ|≥ �) →0 as n→∞.

�is theorem can be proved using Chebyshev’s Inequality or Characteristic functions.

�e  �eorem  on  weak  laws  of  large  numbers  guarantees  the  convergence  of  chains  to  a  stationary  distribution  as
n→∞ even if the sample depends on the number of samples drawn. With �xed parameters of a and b in the beta prior distribu-
tion (equation 1.4) and r the number of success and n sample size increases E(\vartheta \mid r, n) \;\to\; \frac{r}{n} and the dis-
persion goes to zero. �is means that as n increases, the posterior distribution becomes condensed, and sampling distribution
takes over the prior distribution.

Results

�e code given in Bugs code 1.1implements the Bayesian model, providing a full MCMC chain for each parameter.
Chains produce estimates for the posterior distributions and other associated statistics, such as means, medians, standard devia-
tions, and credible intervals. �e results of the simulation with one chain are given in Table 1.1.
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< Insert BUGS code 1.1 >

MCMC Convergence Diagnostics

�e tool that can check for the convergence of parameters to a target distribution is called MCMC diagnostics. �ese
tools  check  whether  the  sample  generated  accurately  approximates  the  target  distribution.  MCMC  diagnostics  are  used  to
check:

•Convergence: it is essential to know that the distribution of ϑ (t) goes closer to p (ϑ |y)?

•E�ectiveness: how accurate do the distributions p (ϑ |y) are approximated from ϑ (t)?

�e Probability distributions of treatment failure of �rst-line regimen on the ARV drugs combination

�e characteristic of the Bayesian methods is that all conclusions are based on the joint posterior distribution, which
addresses a range of questions with appropriate summaries of posterior distributions. In addition, it reports posterior sample
parameters such as the mean, median and standard deviation, which are of interest either as a point estimate or credible inter-
val within which the parameter lies with a probability of 0.95. �e analysis was run 40,000 iterations, as shown in the "samples"
column in the node statistics in Table 1.1 is the number of simulations, not the sample size of the data n = 174.

An MCMC chain was run with an adaption period of 10000 iterations with the start sample at 10001 to 40000 for each
of the six nodes. Table 1.1 presents summary statistics on data for the �rst-line regimen on ARV drug combinations. �e statis-
tics such as; the mean, standard deviation (sd), Monte Carlo standard error (MC error) of the posterior sample mean, the point
estimate of 2.5 % percentile, median and the point estimate 97.5% percentile are reported in Table 1.1.

�e calculated values in Table 1.1 show that MC error < 1 − 5% of posterior sd as the rule of thumb in Bayesian data
analysis has been satis�ed. Generally, a mean or median of the posterior samples for each parameter of interest as a point esti-
mate of 2.5% and 97.5% percentiles of the posterior samples for each parameter gives a 95% credible posterior interval. �e in-
terval within which the parameter lies with a probability of 0.95. �e results in Table 1.1 indicate that the posterior distribution
of p, the rate of treatment failure due to TDRMs, is approximately normal with μ = 0.04124 and σ = 0.01779 for theta (1). �ese
numbers are computationally accurate to about ±8.874E-5 (MC error). Consequently, mean μ = 0.041 and σ = 0.018 with me-
dian of  0.03873 and a credible  interval  of  [0.014,  0.083] which does not contain zero are reported.  �e rest  of  the treatment
probabilities for combinations 2, 3, 4, 5, 6 are reported in Table 1.1 as 0.01034, 0.02973, 0.08952, 0.03765 and 0.03596 respective-
ly are given with their respective Mc errors and 95% credible intervals. From the results it is easy to identify a combination with
lower probability of treatment failure which could be the optimal combination to be prescribed for a patient in the presence of
transmitted drug resistance mutation test results [2].

�e heading in Table 1.1 means in column 1 is the parameter of each combination for example, theta 1 is combina-
tion 1, showing the mean probability failure of 0.04124, with standard deviation of 001779, with MC error which is the degree
of accuracy of  results  as  8.87E-05,  with credible interval  of  [0.014,  0.08279],  median of  0.387,  sampled from 10001 to 40000.
�is interpretation applies to all combinations that is theta 2 up to theta 6.

Table 1.1: First baseline treatment Summary Statistics of parameter theta.

parameter mean sd Mc error 2.50% median 97.50% start sample

theta[1] 0.04124 0.01779 8.87E-05 0.014 0.0387 0.08279 10001 40000

theta[2] 0.01034 0.00361 1.71E-05 0.0045 0.0099 0.01853 10001 40000

theta[3] 0.02973 0.01655 8.13E-05 0.0064 0.0268 0.06985 10001 40000
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theta [4] 0.08952 0.04795 2.40E-04 0.0201 0.0812 0.2037 10001 40000

theta [5] 0.03765 0.01378 7.27E-05 0.0155 0.036 0.06932 10001 40000

theta [6] 0.03596 0.02411 1.16E-04 0.0047 0.0309 0.09598 10001 40000

Bayesian Analysis Tests for a Di�erence in the Survi-
val  Experience  of  Two  Combinations  in  the  Treat-
ment of HIV

�e  likelihood  test  compares  the  overall  survival
experience  of  two  or  more  groups  by  comparing  the  �rst-
ordered observation to the last-ordered observation (of time
to  event).  Bayesian  procedures  mimic  the  conventional

methods, although the interpretation of the test is a strictly
Bayesian  approach.  �e  likelihood  test  compares  the  two
groups by comparing the observed minus the expected num-
ber  of  events  (event,  survival,  and  so  on),  which  are  nor-
malised by the variance of the di�erence.

�e expected number  of  failures  for  combination
1 was computed as follows:

It  is  assumed that  the  failure  probability  (and the
probability of a censored observation) then the two combi-
nations are the same at each period. Note that the number
of  failures  and  the  number  of  censored  observations  for
each period follows a binomial random variable; hence, the
number at  risk  also is  a  random variable.  Observe that  the
number at risk at any time decreases by the number of fail-
ures and the number of censored observed.

�e Bugs  code.1.2  calculates  the  di�erence  in  the
observed minus expected events for combination 1, assum-
ing  no  di�erence  in  the  probability  of  failure  between  the

two. �e observed minus expected di�erences for combina-
tion 2 di�er only in sign to those of combination 1. Observa-
tions of treatment failure or censored events are assumed to
have a binomial distribution, whose corresponding probabil-
ities  are  given  Beta  (.01,  .01)  prior  distributions.  �is  in-
duces  a  posterior  distribution  to  the  number  of  expected
events given by (equation 1.6), and this induces a posterior
distribution  to  the  observed  minus  expected  di�erences  of
combination 1. �e interest is to tests for a di�erence in the
overall failure between the two combinations, which is giv-
en as:

Where m = 32 is the number of observed times for
each combination. Also, the sum of the observed minus ex-
pected di�erences for Combination 2 is given as:

\text  {  some  }  2=\sum_{i=1}^{i-m}\le�(d_{2  i}-
a_{2  i}\right)\:\:\:\  1.8Wherea_{2  i}=\le�[\frac{R  2(i)}{(R
1(I)+R  2(i)}\right]\le�(d_{1  i}+d_{2  i}\right)  \:\:\:\:  1.9

�is is the expected number of failures for combi-

nation 2 for the ith time. �e Bayesian method was used to
test for the di�erence in failure time between combinations.

On comparing the two combinations, which are ordered in
time, a likelihood test was adopted. Although its interpreta-
tion of results is strictly Bayesian, the likelihood test, which
mimics  the  conventional  methods  of  log-rank  test,  was
used. �e likelihood test compares the overall of the two
combinations of the observed minus the expected number
of events, which are normalized by the variance of the di�er-
ence. For example, if there is no di�erence in failure rate be-
tween combinations,  then it  would be expected that half
would be positive, and the other half would be negative, and
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the average would be zero. Alternatively, if the 95% credible
interval includes zero, it is concluded that there is no signi�-
cant di�erence in failure rate between combinations.

< Insert BUGS code 1.2 >

�e  Bayesian  methods  depend  on  some  1  on  the
interpretation of parameters (equation 1.7), that is the sum
of the di�erences of the observed failures minus the expect-
ed  (with  the  assumption  that  the  overall  failure  pattern  is
the same for the two combinations), the number of failures
for ordered values of failures and censored times for combi-
nation  2.  �e  posterior  distribution  is  given  in  Table  1.2
with  a  posterior  mean of  9.885  with  an  sd  of  2.165,  a  95%
credible interval of (-0.5628, 19.62),  and a median of 10.  It
can  be  observed  that  the  credible  interval  includes  zero,
means  there  is  no  di�erence  in  e�cacy  between  combina-
tions. Similarly, the values for some 2 (equation 1.8), which
is  the  sum  of  the  observed  minus  expected  failure  rate  for

combination  2  was  investigated  for  the  di�erences  in  the
failure rate of the two combined using the density plots Fig-
ure 1.3,

Furthermore,  the  parameters  that  measures  the
overall di�erence in failure rate are the likelihood ratio (Lr),
the posterior distributions of some1 (4.4.6) and the posteri-
or distribution of some 2 (4.4.7. In this analysis, the Lr has a
posterior mean of 3.676, a median of 3.258 and a 95% credi-
ble  interval  of  (2.572,  7.215) Table  1.2),  imply that  there is
evidence that the two combinations do not di�er in failure
rates.

�e posterior densities  of  some 1 and some 2 are
shown in Figure 1.3.  If  there is  no di�erence in the overall
failure  pattern  between  the  two  combinations,  some1  and
some 2 would be expected to tend to 0 on average Figure 1.3
shows that both combinations tend to zero on average, imp-
lying no di�erence in failure rates between combinations.

Figure1.3: Posterior density of some 1 and some 2

For the Bayesian, the likelihood ratio parameter is

L_r  =  \frac{\text{some1}  \cdot  \text{some1}}{e_1}
\;+\; \frac{\text{some2} \cdot \text{some2}}{e_2}

Where some are given by equation 1.7 and some 2
is given by

e_1 = \sum_{i=1}^{32} a_{1i}

Is the total number of expected failure for combi-
nation 1, and?

e_2 = \sum_{i=1}^{32} a_{2i}

Is the total number of expected failure for combi-
nation 2?

�e Bayesian methods depend on some 1 parame-
ters  (1.7),  the  sum  of  the  di�erence  between  the  observed
numbers  of  failures  minus  the  expected  (with  the  assump-
tion that  the overall  failure pattern is  the same for the two
combinations) number of failures for ordered values of fail-
ures  and  censored  times  for  combination  2.  �e  posterior
distribution  is  given  in  Table  1.2  with  a  posterior  mean of
9.885  with  an  sd  of  2.165,  a  95%  credible  interval  of
(-0.5628, 19.62), and a median of 10. It can be observed that
the credible interval includes zero. �is indicates that there
is no di�erence in treatment failure between combinations.
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Table 1.2: A Bayesian analysis of observed minus expected for combination 1 and 2

�is Lr of 3.676 is the likelihood ratio of combination 1 and 2, with has a credible interval of 2.572 to 7.215 (Table 1.2)
is similar to the log-rank (mantel cox) of 2.788 in Table 2.1 from the conventional methods since it is included in the credible
interval of the Bayesian approach of hypothesis testing of the null hypothesis. �is shows that there is evidence to conclude that
at a 5% level of signi�cance, there is no di�erence in failure rates between combination 1 and combination 2 for both methods.

A conventional procedure based on the Chi-square statistic of 2.788 under the null hypothesis indicated no di�erence
in failure rates of the two combinations. While the likelihood ratio value of 3.676 from the Bayesian method gave some 1 credi-
ble intervals of -0.5628 to 19.62 includes zero means the null hypothesis was retained. �e credible interval of some 1 includes
the Chi square statistic of 2.788 means both methods retained the null hypothesis of no di�erence in e�cacy between combina-
tions.

Cox Model with Covariates

In assessing the e�ect of ARV combinations on time to events, all available characteristics of a patient must be includ-
ed in the analysis. �at means variables such as age, gender, regimen, CD4 counts, weight, and gender must be included in the
model. Estimating the ARV combinations ' survival probabilities can determine the variables that a�ect treatment failure time.
When the CD4 counts is included, it is expected that the hazard ratio of the combined e�ect to be modi�ed, and the estimated
survival probabilities will also change. �e following code statements are included in the bug’s code.

Id[i, j] <- Y [i, j]*exp(beta[1] * x1[i]+beta[2]*x2[i]) * dL0[j] includes the covariate (log CD4 counts) in the model, and
the code is as follows:

comb.1[j] <- pow (exp (-sum (dL0[1: j])), exp (beta [1] * 1+beta [2] *2.33));

Comb.2[j] <- pow (exp (-sum (dL0[1: j])), exp (beta [1] * 2+beta [2] *3.21));

�at means both the regimen indicator and the log CD4 counts are included in computing the posterior distribution
of  the  survival  proportions  for  both  combinations.  �e  regimen  indicator  is  1  for  combination  1  and  is  for  combination  2,
while the coe�cient beta is the e�ect of the combination on the failure times, and beta [2] is the e�ect of the log of the CD4
counts on the failure time. �e average CD4 counts for combination 1 was 2.33, while the average CD4 counts for combination
2 was 2.21.

< Insert BUGS code 1.3 >

�e results provided in Table 1.3 gives values of the parameters for the analysis. �e HR for beta [1], the di�erence in
the two combinations, is estimated as 0.8651 with a posterior median of 0.8525 and a 95% credible interval of (0.6246, 1.177).
HR for beta [2], which measures the e�ect of CD 4 covariates, has the posterior mean of 0.7429 with sd of 0.2176, the median of
0.7093, and a 95% credible interval of (0.4289, 1.251). HR for beta [3] the e�ect of gender has the posterior mean of 0.7165 with
sd of 0.1308, the median of 0.7058, and a 95% credible interval of (0.4923, .09963). HR for beta [4] the e�ect of weight has a pos-
terior mean of 0.9975 with sd of 0.009264, the median of 0.9978, and a 95% credible interval of (0.9802, 1.017). HR for beta [5]
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the  e�ects  of  age  have  a  posterior  mean  of  1.003  with  an  sd  of  0.01047,  a  median  of  1.004,  and  a  95%  credible  interval  of
(0.9842, 1.025).

Table 1.3 provides beta coe�cients of the covariates regimen, log CD4 counts, gender, weight and age. �e values are:
beta [1] = -0.1562, beta [2] = -0.3103, beta [3] = -0.3512, beta [4] = -0.00404 and beta [5] =0.0045. Beta [4] is the weight of the
patient and beta [5]. �e age of patients has no impact on time to failure. However, the other covariates have an impact on time
to failure. For example, the hazard ratio of beta [1], which is the regimen, has a hazard ratio of 0.8651, with a median of 0.8525
and a 95% credible interval of (0.6246, 1,177). �e negative beta value means a lower risk for combination 1 in the sample. �e
estimated risk of failure due to combination 1 is exp (-0.1562) = 0.8554. �at is, combination 1 has 0.8554 the risk that combi-
nation 2 has a failure, or combination 1 has a 14.46% lower risk of failure than combination 2. �e estimated risk of 0.8556 indi-
cates that combination 1 has a 14.46% lower risk of failure than combination 2.  Accounting for sampling variability,  the de-
crease in risk for combination 1 could be 37.54% or as small as zero.

Table 1.3: Bayesian Analysis Comparing Times to failure for combination 1 versus combination 2 (the Cox Model with Covari-
ates).

parameter mean sd Mc error 2.50% median 97.50% start sample

HR. beta1 0.865 0.1423 0.005481 0.6246 0.852 1.177 10001 50000

HR. beta2 0.742 0.2176 0.01459 0.4289 0.709 1.251 10001 40000

HR. beta3 0.716 0.1308 0.002404 0.4923 0.705 0.996 10001 30000

HR. beta4 0.997 0.0092 6.81E-04 0.9802 0.997 1.017 10001 30000

HR. beta5 1.003 0.0104 9.68E-04 0.9842 1.004 1.025 10001 30000

beta [1] -0.156 0.162 0.005479 -0.4686 -0.157 0.162 10001 60000

beta [2] -0.31 0.2839 0.01698 -0.8275 -0.319 0.276 10001 60000

beta [3] -0.351 0.1776 0.00235 -0.7043 -0.349 -0.008 10001 60000

beta [4] -0.004 -0.004 4.68E-04 -0.021 -0.004 0.013 10001 60000

beta [5] 0.004 0.0097 4.96E-04 -0.0138 0.004 0.024 10001 60000

Key: Where 1 = regimen, 2 = CD 4 count, 3 = gender, 4 = weight and 5 = age

Table 1.3 is read as; Hazard ratio (HR) from a survival analysis as a “reduction in the risk of treatment failure,” by an amount

equal to 100 × (1 − HR) %. Stating, for instance, that “combination 2 reduces the risk of treatment failure by 13.5%, ” based on
an observed survival HR beta 1 of regimen as 0.865, is a typical way of communicating survival bene�t compared to combina-
tion 1, with standard deviation of 0.1423, MC error of 0.005481, credible interval of [0.6246,1.177[ , median of 0.852 and sam-

pled up to 50000. �ese values are associated with the beta value of -0.156 for regimen as shown in the key below the table. �e
others are patients’ covariates such as: HR beta 2 for CD4 count, HR beta 3 for gender, HR beta 4 for weight and HR beta5 for

age. It can be observed that age has HR beta of 0.997 which is 100% means there is no di�erence in survival due to age.

�e  Conventional  Approach  to  Survival
Analysis  of  HIV  Naïve  Patients

Survival  analysis  is  normally  carried  out  with  the
help of nonparametric methods, semi - parametric and para-
metric methods [15].

Non-Parametric Methods

Kaplan-Meier  Estimator  is  a  non-parametric
method that is used to estimate the overall likelihood of sur-
vival from the given set of survival data. �e Kaplan Meier
method  does  not  assume  any  distribution  for  the  survival
time observed in the study [16].
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A conventional approach was adopted on survival
analysis relates to the time for the HIV naïve patient to expe-
rience  the  treatment/virological  failure  of  the  �rst  baseline
regimen.  �e  standard  methods  of  survival  analysis  con-
struct  a  Kaplan  Meier  curve  which  estimates  the  survival
rates  of  HIV  patients  who  experience  treatment  failure  of
HIV patients. �e cox model was also used to search for the
association between the HIV patients' survival time and risk
using the cox models. �is model estimates the treatment ef-
fect  a�er  accommodating  other  characteristics  and  assess-
ing  the  risks  of  treatment  failure  for  HIV  patients,  given
their predicted characteristics.

�e Kaplan Meier Curve

�e  Kaplan  Meier  curve  shows  the  survival
chances (the total chances of not experiencing treatment fail-
ure  at  a  given  time  for  baseline  combinations).  �us,  the
chances  of  a  patient  being  alive  are  the  cumulative  conse-

quences  of  a  patient's  circumstances  up  to  time  ti.  �e

chances of a patient being alive for up to a week ti calcula-
tion is given by:

\frac{n_i-d_i}{n_i}=\frac{\text  {  No.not  experi-
enceventheweekbefore-No.experiencingevent  onweekt  }}{\-
text { No.notexp erienceventheweekbefore }}Survival\: until
\:week  \:$t_i:  S(t_i)  =  \frac{n_i  -  d_i}{n_i}  \cdot
S(t_{i-1})\:\:\:\:\:2.1

Figure 2.1 displays a Kaplan Meier plot that show
the  survival  probability  for  Combination  2  (TDF+FTC+E-
FV)  that  is  superior  to  the  other  combinations  around  30
weeks as the survival probability is larger than all combina-
tion, but they generally look the same.

�e  Kaplan  Meier  Survival  curves  obtained  from
the analysis is shown in Figure 1. �e survival curves indi-
cate  that  the  CABG  patients  have  greater  survival  times
than  the  PCI  patients.

Figure 2.1: Comparison of Survival rate between combina-
tions 1 and 2

It can be concluded that the ARV combinations used in Zambia are not signi�cantly di�erent in suppressing the viral
load as indicated in the Kaplan Meier curve as indicated in Figure 2.1 In survival analysis, the survival probabilities are usually
reported at a particular time point on the curve, and the median survival time (the time for which 50% had the event) is regis-
tered. �us, for example, the overall median estimated survival time between ARV and treatment failure initiation is 40, 42 and
39 weeks for combinations 1, 2 and 5, respectively as shown in Figure 2.1

�e Test for Log Rank

�e Log-rank tests  the  null  hypothesis  of  no di�erence  in  survival  times  between the  combinations  of  ARV at  any
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time points up to 48 weeks. �e test compares the data and theoretical results for ARV combinations. It was assumed that the
trial of the survival times was continuous and that the ratio of outcome risks occurring in combination 1 contrasted to the risk
in combination 2 remains constant (proportional hazard assumption).

�e test statistic for comparing two combinations, A and B:

�e expected values can be calculated as:

Where di = total events at the time ti,nAi = total pa-

tients in danger at a time ti in cohort A and = total patients
at risk. SPSS was used for computations and obtained the
following results:

�e  log  rank  test  results  given  in  the  Table  2
shows that the survival times CABG Patients is Signi�cantly
greater than the PCI patients’ survival time (p<0.05).

Table 2.1: Overall Comparisons.

Parameter Chi-Square df Sig.

Log Rank (Mantel-Cox) 2.788 2 0.248

Breslow (Generalized Wilcoxon) 4.16 2 0.125

Tarone-Ware 3.572 2 0.168

�e overall comparison from a frequentist perspec-
tives give a Log rank of 2.788 with 2 degrees of freedom and
a p-value of 0.248 means there is no signi�cant di�erence in
e�cacy between combinations 1 and 2.

�e  equality  of  survival  distributions  was  tested
for the di�erent levels of �rst-line. �e regimen was found
from the survival distribution. �e test statistics were com-
pared  in  Table  2.1  value  of  the  Chi-square  distribution  at
5%  signi�cance  level,  2  df,  and  the  critical  value  was  .�e
test statistic was 2.788 from Table 2.1; this value is less than
the critical value Hence, the null hypothesis is accepted and
concludes that there is no evidence of a di�erence in survi-
val  time  between combinations  1  and 2.  �e p-value  from
Table 2.1 is 0.248 and is greater than the signi�cant level of
0.05,  meaning that the null  hypothesis of no di�erence be-
tween combinations is accepted. �erefore, there is enough

evidence for the risk di�erence between the combinations 1
and 2. �e other tests are shown in Table 2.1, such as Bres-
low (Generalized Wilcoxon), which measures the middle of
the period, and Tarone-ware measures the beginning of the
period. Both show no evidence of a di�erence between com-
binations 1 and 2 [17].

Regression Analysis of the Cox Model

Regression analysis of the cox model contrasts the
risks (as a ratio) of combinations in which many characteris-
tics are considered. �e risk of an event is the probability of
time to an event at the endpoint (in this case, treatment fail-
ure) at a time point, given that the patient had no event up
to that point .

�e model for the regression analysis of many vari-
ables is given by:
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�e  hazard  function  for  modelling  is  the  form
\lambda_i(t)  =  \lambda_0(t)  \exp(\beta_1  x_{i1}  +  \beta_2
x_{i2} + \cdots + \beta_k x_{ik}), where λi (t) = risk ratio ti
for the individual, λ0 (t)= initial hazard function.

To check for signi�cant e�ects of the covariates in
the signi�cant column in Table 2.2 gives the probability val-
ues. �e probability values are compared with a 5% level of
signi�cance using the standard table values. To interpret the
covariates'  e�ects,  use  the  exponential  (beta)  column  in
Table  2.2.  �is  column  represents  the  risk  ratio  which  ex-
plains the predicted change in the risk for any unit growth
of  the  predictor.  Cox's  regression  model  has  one  assump-
tion to be satis�ed: that is, the comparable risk ratio among
combinations at any time is constant.  Table 2.2 shows that
gender for a patient with a probability value of 0.180 shows
no  observed  risk  of  treatment  failure  for  HIV  infections
over sex. �ere are no e�ects on the predictors such as age,

gender, and drug combination being used; they all show no
signi�cant di�erence at the 5% level. �e p-values are: 0.66,
0.180,  0.124,  0.804  and  0.097  respectively.  However,  the
probability value of CD4 counts, which is the CD4 counts at
diagnosis,  has  a  probability  value  of  0.048,  which  shows  a
signi�cant di�erence at 5%, and the weight of a patient at di-
agnosis has a probability value of 0.011, which is also signi�-
cant at 5%.

For de�nitive data, the risk ratio can be interpret-
ed from Table 2.2 directly on variables in the equation col-

umn of exp (β).  �e risk ratio contrasts the risk of out-
comes occurring between two variables. For example, if the
hazard ratio is greater than 1, the risk of the event occurring
in combination 1 is higher than that of combination 2.

�e formula used for the calculating the hazard ra-
tio is:

Table 2.2: Variables in the Equation

Parameter SE df Sig. Exp() 95.0% CI for Exp()

Lower Upper

Age -.003 .008 1 .669 .997 .981 1.012

Gender .185 .138 1 .180 1.204 .918 1.577

Drug1 2 .124

Drug1(1) .040 .163 1 .804 1.041 .756 1.434

Drug1(2) -.283 .170 1 .097 .754 .540 1.052

CD40 count -.001 .000 1 .048 .999 .998 1.000

Wt. .000 .000 1 .011 1.000 1.000 1.000

�e results of the CD4 counts indicated the e�ec-
tiveness  in  monitoring  the  disease's  progression.  �at
means  for  any  unit  added to  CD4 counts;  the  risk  reduces
by. For example, for any �ve units added to the CD4 counts,
the risk reduces by a 49.9% decrease. On inspecting the re-
gression coe�cient in Table 2.2, the values for the variables
age,  CD4 counts,  and  drug1  (2)  are  negative,  while  weight

has  a  0  coe�cient,  which predicts  HIV 1 patients  with the
more signi�cant values of variables as indicated in Table 2.2
[26].

Conclusion

�e Kaplan Meier curves and log rank test shows
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no signi�cant di�erence in performance between combina-
tions 1 and 2.

Discussion

Bayesian approach to Survival analysis can be used
to carry out the survival analysis due to its ability to handle
design and analysis issues in survival model. �e main rea-
son for the use of Bayesian approach is due to its �exibility
and  operating  characteristics.  [8,  18].  �e  di�erence  be-
tween the Bayesian and the frequentist methods is in terms
of  uncertainty  about  unknown  parameters  in  a  model
which  is  expressed  through  a  distribution,  called  the  prior
distribution [11].

�e main inferential  tool  in the Bayesian method
is called the posterior distribution [19], which is construct-
ed  from  the  data,  and  the  prior  distribution.  �e  proper
choice of priors plays an important role in the success of the
Bayesian survival analysis in achieving its objectives [19].

In this analysis we carried out a comparison study
of  Bayesian versus  frequentist  methods  of  survival  analysis
of HIV naïve patients initiated with ART [20]. We calculat-
ed the probability of HIV treatment failure of ARV using a
Beta-Binomial model [2]. �e results obtained in Table 1.1
were unique as they were obtained from the Bayesian meth-
ods only as the frequentist methods do not make probabili-
ty statements about the parameter of interest.

Interpretation of Probability

Frequentist  approach  does  not  make  direct  state-
ments about parameters whereas Bayesian approach makes
direct statements about parameters. Table 1.1 give the prob-
abilities of treatment failures of each combinations such as:
0.04124, 0.01034, 0.02973, 0.08952, 0.03765 and 0.03596 for
combinations 1, 2, 3, 4, 5, and 6 respectively. Based on these
probabilities  a  Physician  can  make  informed  decision  on
the optimal choice of combination for a patient in relation
to the Transmitted drug resistance mutation strains test [2,

21]. Null Hypothesis HO:

�ere is no signi�cant di�erence in treatment fail-
ure between combinations 1 and 2 at or 5% level of signi�-
cance.

A.Frequentist Approach

When the treatments are repeated under the same
condition with new data each time, only in 5% of the times
the null hypothesis will be rejected wrongly (when it is actu-
ally true).  Table 2.1 give a Log- Rank value of 2.788 with a
p- value of  0.248,  means there is  no signi�cance di�erence
in e�cacy between combinations 1 and 2 at 5% level of sig-
ni�cance.

B.Bayesian Approach

Bayesian  approach  will  give  exact  probability  of
null hypothesis being true which is straight and easily inter-
pretable. In the above case, the probability of null hypothe-
sis  being  true  is  only  5%.  Table  1.2  give  a  Likelihood ratio
statistic  of  3.676,  and  the  credible  interval  for  some  1  as
-0.5628  and  19.62  means  the  null  hypothesis  is  retained
since the credible interval includes zero. It can be observed
that  the  credible  interval  for  likelihood ratio  test  of  [2.572,
7.215]  includes  the  Log-rank  statistic  of  2.788,  means  the
two methods are in agreement in testing the null  hypothe-
sis.

In frequentist approach, the traditional con�dence
interval  is  interpreted  as  if  we  construct  con�dence  inter-
vals over time from the samples drawn from the population,
which  means  the  95%  of  con�dence  intervals  constructed
will contain the parameter of interest. It will not specify the
probability  that  the  parameter  lies  in  the  interval,  that  is,
there is a 95% chance that the survival time lies in the inter-
val  (Akbari  et  al.,  2019).  However,  the  Bayesian  approach,
gives the credible interval or the Bayesian highest posterior
density  interval  gives  us  the  95%  probability  that  the  un-
known  parameter  mean  survival  time  lies  in  the  interval
[18].

On comparing the parameter values it  can be ob-
served that the beta values from Bayesian method are simi-
lar to beta values for Frequentist method [1, 4]. �e beta val-
ue for regimen is -0.156 for Bayesian method and -0.283 for
Frequentist method with HR beta of 0.865 and Exp.beta of
0.754 respectively. �e con�dence interval of [0.540, 1.052]
for  Frequentist  and  credible  interval  of  [0.6246,  1.177]  for
Bayesian method.  However,  the  Bayesian method provides
a value of MC error of 0.005481 to indicate the degree of ac-
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curacy  of  parameters  which  is  not  found  in  Frequentist
methods. �e rest of the parameters can be compared from
Table 1.3 for Bayesian approach and Table 2.2 for Frequen-
tist approach.

�e Kaplan Meier  Curve analysis  is  a  Frequentist
approach only (Figure 2.1) and not Bayesian.

A  powerful  feature  of  the  Bayesian  approach  is
that all inferences are based on the joint posterior distribu-
tion. �is implies that the approach can address wide range
of  substantive  questions  by  appropriate  summaries  of  the
posterior distribution. It typically reports:

• Either mean or median of the posterior samples
for each parameter of interest as a point estimate,

• 2.5% and 97.5% percentiles of the posterior sam-
ples for each parameter to give a 95% posterior credible in-
terval (interval within which the parameter lies with proba-
bility 0.95).

Conclusion

�e paper provides a comparison overview of fre-
quentist  and Bayesian  approaches  to  survival  analysis  with
the  help  of  HIV  treatment  naïve  dataset  using  WinBUGS
so�ware.  �e results  obtained in both methods were  simi-
lar. However, the outlined Bayesian framework provides sev-
eral bene�ts as it uses data more e�ciently and it provides a
natural and principled way of combining prior information
with  data  and  has  the  ability  to  update  results  as  new  evi-
dence  is  available.  Also,  the  Bayesian  approach  is  suitable
for  survival  analysis  of  HIV  data  which  is  invisible  due  to
stigma. �e results obtained may help provide a feasible, re-
liable,  and valid  methods  to  assess  the  future  management
interventions of HIV in improving patients’ outcomes.

Limitations of the Study

In this study, secondary data was used in building
models  hence  authenticity  and  accuracy  of  the  data  used
cannot  be  guaranteed.  �e  results  may  change  depending
on the accuracy of the data.

Appendix Information

https://www.jscholaronline.org/articles/JAID/App
endix-Information.pdf
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