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Abstract

Brain ischemia leads to excessive infiltration of clusters of CD8+ T and natural killer (NK) cells in the brain, which aggravate 
ischemic brain injury. Acute ischemic stroke also has a negative impact on the antibacterial immune response, leading to 
stroke-induced immunodepression and infection. Umbilical cord mesenchymal stem cell (UCMSC) have an immunosupn-
pressive function. Therefore, we aimed to determine whether UCMSC treatment alleviates the excessive infiltration of CD8+ 
T and NK cells. We also investigated significant concerns that UCMSC treatment might suppress antimicrobial immunity, 
leading to an increased risk of infection.In this study,stroke and post-stroke infective mice received intravenous injection of 
UCMSC. We found UCMSC treatment ameliorated the infiltration of CD8+ T and NK cells in the brain, reduced levels of 
proinflammatory cytokines, and increased anti-inflammatory cytokines.UCMSC treatment limit post-stroke infection and 
reduce the inflmamatory injury of various organs induced by post-stroke infection.What’s more ,UCMSC treatment main-
tained autophagy, MMP, and the production of ATP, while inhibiting apoptosis of platelets caused by post-stroke infection 
in vivo.Then we also found UCMSC enhance the antibacterial ability of platelets in vitro,implying that UCMSC can limit 
post-stroke infection partly via the regulation of platelets.Based on these findings, UCMSC represent a potential and safe 
therapeutic option for stroke treatment by inhibiting brain injury and limiting post-stroke infection. 
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List of abbreviations: UCMSC: umbilical cord mesenchymal stem cell; IL: interleukin; MCAO: middle cerebral artery occlu-
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notransferase; LDH: lactate dehydrogenase; CK: creatine kinase; MMP: mitochondrial membrane potential; LB: Luria-Bertani
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Introduction

 Infectious complications—primarily pneumonia 
and urinary tract infection—are a leading cause of death in 
ischemic stroke patients[1,2].The impairment of immune 
responses after brain ischemia increases susceptibility to in-
fections[3,4]. Excessive infiltration of cluster of differentia-
tion (CD)8+ T cells or natural killer (NK) cells in the brain 
aggravates ischemic brain injury, while brain ischemia com-
promises NK cell-mediated immune defence in the periphery 
and can result in post-stroke infection [5-7].In addition,the 
grade of immunoinflammatory activation could be related to 
pathogenesis of neuronal damage in ischemic stroke [8,9]. For 
example,TNF-ɑ (Tumor necrosis factor-ɑ) and IL-6 (Interleu-
kin-6) express a higher level in plasma of acute ischemic stroke 
patients,which play a pivotal role in inflammatory processes 
that aggravate ischemic neural damage [10]. MSCs have been 
shown to attenuate harmful immune responses locally and sys-
tematically, providing a significant degree of neuroprotection. 
Careful attenuation of the immune response after stroke af-
fords neuroprotective effects with stem cells playing an active 
role as potent mediator of immunomodulation, which is one of 
the principal mechanisms by which they exert a neuroprotec-
tive effect [11]. However, it is not completely clear how stem 
cell therapy regulates the immune system, and this effect may 
be multifactorial in nature. While mesenchymal stem cells 
(MSCs) have been shown to exert therapeutic effects follow-
ing stroke, inhibit the proliferation and effector functions of 
various immune cells, including T and B lymphocytes and NK 
cells [12-17]. So we remain concerned that MSC transplanta-
tion may also suppress antimicrobial immunity and increase 
the risk of post-stroke infection.

 In our study, we first detected no obvious signs of 
infection in mice with stroke with or without umbilical cord 
(uc)MSC treatment. In another study, however, we established 
a post-stroke infection model using the gram-positive intra-
cellular bacteria Listeria monocytogenes [6] or Escherichia 
coli, and this decreased the number of platelets in mice, while 
UCMSC treatment reversed this change. Symptoms of infec-
tion were also alleviated when these mice were injected with 
UCMSC, suggesting their therapeutic potential against post-
stroke infection. This potential was investigated further in the 
present study by examining the effects of UCMSC on platelets 
and post-stroke infection, as well as determining the underly-
ing mechanisms for these effects.

Methods

Animals

 C57BL6 mice were purchased from the Laboratory 
Animal Center of Southern Medical University and were main-
tained under standard laboratory conditions, with the tempera-
ture controlled at 24 °C and with free access to a standard diet 
and sterile water. All animal procedures were performed in ac-
cordance with the guidelines and approval of the Animal Eth-
ics Committee of Southern Medical University (ethics approval 
code:2017-SJWK-009).

Middle cerebral artery occlusion (MCAO) and post-
stroke infection model

 Mice weighing 20–22 g (aged 7–8 weeks) were allowed 
free access to water but were fasted for 12 h to standardize gly-
caemic state. MCAO was performed under anaesthesia induced 
by intraperitoneal injection of pentobarbital (100 mg/kg). Body 
temperature was maintained at 37°C ± 0.5°C using a heating pad 
(RWD Life Science, Shenzhen, China). To induce MCAO, a 6-0 
nylon suture (Covidien, Mansfield, MA, USA) with a round tip 
and silicon coating was inserted from the left external carotid 
artery into the middle cerebral artery. The success of the surgery 
was verified by monitoring surface cerebral blood flow using a 
laser Doppler flowmeter (Moor Instruments, Devon, UK). After 
1 h, the occluding filament was gently withdrawn back into the 
common carotid artery to allow reperfusion. Mice in the sham 
group underwent a sham operation without suture insertion.

 E. coli were cultured as previously described [18] and 
stored in 30% glycerol at −80°C until use. E. coli were grown in 
Luria-Bertani (LB) medium (10 g/l tryptone, 5 g/l yeast extract, 
and 171.1 mM NaCl). Growth was determined by measuring 
the optical density at 620 nm (OD620) or by plating the cells on 
LB plates and counting viable cells. For infection, age-matched 
male mice were intravenously injected with 107 colony forming 
units (CFU) of E. coli resuspended in 500 μl phosphate-buffered 
saline (PBS) immediately after sham or MCAO operation.To de-
termine the degree of infection, the mouse liver, lung, and brain 
were removed and homogenized in distilled water with 0.01% 
Triton X-100. The number of viable E. coli cells was counted after 
plating serial dilutions of organ homogenates and blood on LB 
plates and culturing overnight at 37 °C.

UCMSC culture and transplantation

 The 1-2 passage UCMSCs were kindly presented by 
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Guangzhou SALIAI Stemcell Science and Technology Co.,Ltd. 
The cells were supplemented with special culture medium for 
UCMSCs, and grown at 37°C in a humidified 5% CO2 atmos-
phere. The culture medium was changed every 2- 3 days, and the 
cells were passaged at approximately 80% confluence.The mice 
were randomly divided into the following different groups (n = 5 
mice per group) after MCAO: Sham, MCAO , MCAO + UCMSCs 
OR CTRL, Sham+Ecoi,MCAO+Ecoi ,MCAO+UCMSCs+Ecoi . 
The transplantation of 3-5 passage UCMSCs through caudal vein 
injection (106 cells in 0.5 mL PBS) was perf ormed 2 h after tranS-
sient MCAO or MCAO+Ecoi. The same amount of PBS without 
cells was injected as the control.

 Assessment of neurological function and measurement 
of cerebral infarct area

 Neurological function was determined based on the 
Modified Neurological Severity Score (mNSS). The mNSS test 
consists of ten different tasks that can evaluate the motor (mus-
cle status, abnormal movement), sensory (visual, tactile and 
proprioceptive), balance, and reflex functions of mice. Neuro-
logical function was graded from 0 to 18 (0 = normal function; 
18 = maximal deficit). One point was scored for each abnormal 
behavior or for the lack of a tested reflex. Therefore, higher scores 
implying greater neurological injury[19].The test was carried out 
by a blinded investigator before and 3 days after MCAO, as previ-
ously described[20]. The infarct areas of different experimental 
groups were measured in photomicrographs of methylthionini-
um chloride-stained tissue sections (5 sections/animal). Experi-
ments were repeated five times.

 Hematoxylin and eosin (HE) staining, immunohisto-
chemistry, immunofluorescence analysis and flow cytometry 
analysis

 At 24 h after MCAO or post-stroke infection, mice 
were anesthetized and transcardially perfused with 20 ml cold 
PBS and 20 ml of 4% paraformaldehyde in 0.1 M PBS. The brain, 
lung, liver, and spleen were removed, post-fixed, and embedded 
in paraffin. The tissue blocks were cut into 5-mm sections that 
were deparaffinized and stained with HE according to standard 
protocols.

 CD8+ T cells and NK cells in the brain and spleen were 
identified by immunofluorescence analysis and immunohis-
tochemistry, as previously described. For the latter, brain and 
spleen tissue sections were incubated overnight at 4°C with pri-
mary antibodies against CD8 (ab25117) and natural cytotoxic-
ity receptor (NCR) (ab199128), Iba1(ab5076), CD68(ab125212) 

(Abcam,Cambridge,MA,USA) respectively followed by processi-
ing with avidin-biotin-peroxidase (BosterBio, Wuhan, China). 
The sections were stained with diaminobenzidine, and nuclei 
were counterstained with hematoxylin.

 For immunofluorescence, the specimens were first 
treated with anti-CD8 or -NCR antibody, followed by Alexa 
Fluor 594-conjugated secondary antibody (A0453; Beyotime In-
stitute of Biotechnology, Shanghai, China). Immunofluorescence 
images were acquired with a confocal laser scanning microscope 
(TCS SP2; Leica Microsystems, Wetzlar, Germany).

Blood biochemical analysis

 Mouse blood was collected via the angular vein under 
anaesthesia into an anticoagulant-containing tube. Biochemical 
analyses were performed at Southern Medical University Huayin 
Laboratory.

Enzyme-linked immunosorbent assay (ELISA)

 Plasma was isolated by centrifugation of blood samples 
at 1500 rpm for 20 min. TNF-α, IL-6, IL-10 in the plasma were 
detected with ELISA kits (Cusabio, Wuhan, China) according 
to the manufacturer’s instructions. Briefly, 100 μl of plasma was 
added to each well of a 96-well plate. After incubation for 2 h at 
37 °C, the plasma was removed, and the plates were sequentially 
incubated with biotin-conjugated primary antibody followed by 
horseradish peroxidase-conjugated secondary antibody for 1 h 
at 37°C, with three washes between each step. After adding the 
chromogenic substrate, the plates were incubated in the dark for 
30 min at 37°C. The reaction was terminated, and the OD450 was 
measured using an iMark microplate reader (Bio-Rad, Hercules, 
CA, USA).

Co-culture of bacteria and UCMSC

 Platelets alone or in combination with UCMSC were 
inoculated with E. coli for 1, 2, 4, or 6 h. Bacterial growth was 
determined by measuring the OD620.

Statistical analysis

 Statistical analysis was performed using SPSS 20.0 
(SPSS Inc., Chicago, IL, USA). Data are presented as the mean ± 
SD. The significance of differences between means was examined 
by Student’s t-test or one-way analysis of variance. Results with P 
< 0.05 were considered significant.
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Results

UCMSC decrease brain lesion size and improve neurological 
function after stroke

 We evaluated the effect of UCMSC on stroke based 
on measurement of the lesion area and the mNSS in an MCAO 
mouse stroke model. mNSS scores (P < 0.05; Figure 1A) as well 
as the lesion area (P < 0.05; Figure 1B) were reduced in the UC-
MSC treatment group as compared to those of the MCAO group, 
suggesting that UCMSC exert therapeutic effects after stroke.

Figure 1: The therapeutic effect of UCMSC in MCAO mice. MCAO mice were treated with or without UCMSC. 
(A) mNSS and (B) lesion area in each group. The data are plotted as the means ± SD. *P < 0.05, n=5 or 3.

Figure 2: UCMSC reduced CD8+ T/NK cells in MCAO mouse brain but not spleen or blood. (A–C) Immunohistochemistry and 
immunofluorescence of CD8+ T cells and NK cells in the brain. (D) Immunofluorescence of the activated state of microglia.(E–H) 
Immunofluorescence and flow cytometry of CD8+ T cells and NK cells in the spleen and blood. Scale bar: 100 μm. The data are 
plotted as the means ± SD. *P < 0.05, n=5

UCMSC inhibit immunological function after stroke

 We next examined the immunomodulatory effects of 
UCMSC treatment on the post-stroke brain by examining the 
abundance of CD8+ T cells and NK cells by immunohistochemis-
try and immunofluorescence analysis, as well as flow cytometric 
analysis. Both cell populations were diminished in mice treated 
with UCMSC as compared to that in the MCAO group (Figure 
2A–C). We detected the activated microglia by staining Iba1and 
CD68 (activated microglia marker) after induction of MCAO. 
Iba1- and CD68-positive cells were increased after MCAO,while 
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UCMSC treatment decreased the Iba1-positive and CD68-pos-
itive cells (Figure 2D).Additionally, the proportions of CD8+ T 
cells and NK cells were decreased in the spleen and peripheral 
blood after MCAO, but these changes were not abrogated in the 
MCAO + UCMSC group (Figure 2D–G). Meanwhile, plasma 
levels of the pro-inflammatory cytokines interleukin (IL)-6 and 
tumour necrosis factor (TNF)-α were lower, whereas that of 
the anti-inflammatory cytokine IL-10 was higher, in UCMSC-
treated mice as compared to levels in untreated MCAO mice, as 
determined by ELISA (Figure 3A–C).

UCMSC treatment mitigates infection after stroke and 
prevents organ damage

 HE staining of lung, liver, and spleen tissue sections as 
well as blood routine revealed no signs of infection in MCAO 
mice with or without UCMSC treatment (Figure 4). To assess 
the effect of systemically administered UCMSC on post-stroke 
infection, MCAO mice with or without UCMSC treatment and 
E. coli infection were examined for the presence of bacteria 
in the brain, lung, liver, and spleen. Compared to the MCAO 
group, MCAO + UCMSC mice showed a lower bacterial bur-
den in these organs, including a reduction in the size of the 
germinal centre of the spleen (Figure 5E). During post-stroke 
infection, inflammatory cells infiltrated the lung, brain, and 
liver and caused cell and tissue damage; these effects were alle-
viated by UCMSC treatment. We also measured aspartate ami-
notransferase (AST), alanine aminotransferase (ALT), creatine 
kinase (CK), and lactate dehydrogenase (LDH) levels in plasma 
and found that AST, ALT, CK and LDH were downregulated 
in the UCMSC treatment group as compared to levels in the 
MCAO group during the course of infection. Plasma TNF-α 
and IL-6 levels were also reduced, whereas IL-10 was upregu-

Figure 3: Expression of pro-inflammatory cytokines IL-6, TNF-α and IL-10 in mouse 
plasma. The data are plotted as the means ± SD. *P < 0.05, n=3

lated by UCMSC treatment. 

UCMSC and platelets have synergistic antibacterial effect

To investigate whether UCMSC enhance the antibacte-
rial ability of platelets, platelets were co-cultured with E. coli. 
Finally,we found the growth of E. coli was further inhibited in 
the presence of UCMSC (Figure 7).

Discussion

 Infection in the lungs and other organs are relatively 
common during the subacute stage of stroke and are associated 
with adverse outcomes[21]. Preventative antibiotic therapy does 
not influence functional outcomes in the overall population 
[22,23]. Ischemic stroke negatively impacts the antibacterial imr-
mune response, leading to stroke-induced immunosuppression 
and infection[7,24]. For example, brain ischemia can cause a ree-
duction in NK cell numbers and response in the periphery via 
activation of the catecholaminergic system and hypothalamic-
pituitary-adrenal axis, which can result in infectious complica-
tions [6]. In accordance with previous studies [25], we observed 
a decrease in the numbers of CD8+ T cells and NK cells in the 
spleen and peripheral blood after stroke, whereas more of these 
cells infiltrated the brain tissue, which could aggravate brain in-
jury. MSCs (mesenchymal stem cells) have immunomodulatory 
activity and are therefore promising agents for cell-based thera-
pies. MSCs regulate a variety of immune cells—for example, they 
inhibit the activation and proliferation of T cells and induce T 
cell apoptosis while suppressing the differentiation and matura-
tion of dendritic cells [26-30]. MSCs have also been shown to 
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Figure 4. No infective signs were found in the MCAO or UCMSC groups. MCAO mice were treated 
with or without UCMSC, followed by analysis of (A) white blood cells, (B) lymphocytes, (C) neutro-
phils, and (D) platelets, as well as (E) HE staining of the brain, lung, liver, and spleen. Scale bar: 100 
μm. The data are plotted as the means ± SD. NS, not significant. *P < 0.05, n=5
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Figure 5: UCMSC limit post-stroke infection and protect important organs. MCAO mice were treated with 
or without UCMSC in the presence or absence of Escherichia coli. The bacterial burden was assessed in the 
(A) lung, (B) liver, (C) brain, and (D) blood. (E) HE staining showing the germinal centre of the spleen and 
damage in the lung, brain, and liver. Plasma levels of (F) ALT, (G) AST, (I) LDH, (M) TNF-α, (N) IL-6, (O) 
IL-10. Scale bar: 100 μm. The data are plotted as the means ± SD. **P < 0.01, *P < 0.05, n=5.
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Figure 6: Platelet function was maintained by UCMSC treatment in vivo. MCAO mice were treated with or without 
UCMSCs in the presence or absence of Escherichia coli. (A) Numbers of platelets. (B) Levels of autophagy marker 
LC3-II and apoptosis markers Bcl-2 and Bcl-xL. Platelet (C) mitochondrial membrane potential (MMP) and (D) 
ATP levels. The data are plotted as the means ± SD. *P < 0.05, n=5
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Figure 7: Antimicrobial activity of platelets was enhanced by UCMSC. Growth rate of Escherichia coli in 
Luria-Bertani medium co-cultured with or without platelets in the presence or absence of UCMSC. The 
data are plotted as the means ± SD. **P < 0.01, *P < 0.05, n=5

block NK cell activity [31-33]. In our study, we found that UCI-
MSC reduced the number of CD8+ T cells and NK cells in brain 
tissue but not in the spleen or peripheral blood of mice following 
stroke, suggesting that UCMSC can prevent brain injury. Fur-
thermore, plasma levels of the pro-inflammatory cytokines IL-6 
and TNF-α were reduced, whereas that of the anti-inflammatory 
cytokine IL-10 was increased by UCMSC treatment, confirming 
that UCMSC induce immunosuppression [34].

 One point of concern is whether UCMSC can increase 
the risk of infection after stroke by suppressing antimicrobial 
immunity. However, symptoms of post-stroke infection were al-
leviated in mice following UCMSC treatment, which not only 
inhibited the growth of bacteria in certain organs but also pre-
vented tissue damage caused by bacteria and inflammatory fac-
tors. Post-stroke pneumonia is a major cause of death after stroke 
[35]. In our study, UCMSC treatment reduced haemorrhage, 
oedema, and cellularity in injured lung lobes caused by E. coli. 
So, our results show that UCMSC play a protective role against 
post-stroke infection, but the underlying mechanisms were not 
completely clear. 

 Recent data show that MSCs exert strong antimicrobial 
effects through indirect and direct mechanisms, partially me-
diated by the secretion of antimicrobial peptides and proteins 
(AMPs)[36-38],which may be one reason of UCMSC inhibit-
ing the post-stroke infection .However,we also found UCMSC 
inhibit the apoptosis of platelets,as well as maintain the count 

of platelets after post-stroke infection.In previous studies, plateo-
lets have been shown to inhibit bacterial growth by surround-
ing bacteria and secreting a high concentration of antimicrobial 
substances [39]. Platelets also activate some immune cell types 
to fight bacteria and work with Kupffer cells to eradicate blood-
borne bacterial infection caused by Bacillus cereus and methicil-
lin-resistant Staphylococcus aureus [40]. Moreover, they interact 
with neutrophils to form a neutrophil extracellular trap that se-
questers bacteria [41]. However, platelets invariably show dimin -
ished function and numbers after severe infection. For example, 
patients with sepsis often exhibit thrombocytopenia, which is 
associated with poor prognosis [42-44]. The mitochondrial dysr-
function in platelets observed in sepsis and bacterial infection 
can lead to apoptosis: Bcl-xL—an essential regulator of platelet 
survival—is upregulated in the platelets of sepsis patients[45, 46]. 
Autophagy is important for platelet functions, including haemo-
stasis and thrombosis[47]. In our study, UCMSC treatment res-
versed the decrease in the autophagy marker LC3-II caused by 
MCAO and E. coli infection.Mitochondria are the main target of 
the intrinsic apoptosis pathway, and mitochondrial membrane 
depolarization serves as a marker of apoptosis [48]. ATP provido-
ed by mitochondria plays an important role in normal cellular 
functioning, including the response to physiological stress [49]. 
Thus, a decrease in ATP levels reflects platelet damage. MMP de -
polarization is also used as a marker of apoptosis in nucleated 
cells and anucleate platelets [50].Platelet MMP reflects disease 
severity in patients with sepsis and correlates with clinical out-
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come [51]. In the present study, UCMSC treatment increased the 
expression of the anti-apoptotic proteins Bcl-2 and Bcl-xL, while 
restoring MMP and ATP production in platelets. In vitro, UCP-
MSC and platelets can synergistically inhibit the proliferation of 
Escherichia coli.So we conclude that UCMSC may play a protecd-
tive role against post-stroke infection by restoring the count and 
the function of platelet.  

Conclusions

 These results suggest that UCMSC have the ability 
to modulate the function of CD8+ T cells, NK cells. Our study 
serves as the basis for future studies and offers new insights into 
the mechanisms responsible for the beneficial effect of UCMSC 
transplantation in patients with stroke and post-stroke infection.
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