
  JScholar Publishers                  

Tuning of WO3 Phase Transformation and Structural Modification by                 
Reactive Spray Deposition Technology
Rishabh Jain1, 3, 4,*, Yang Wang1, 3,4 and Radenka Maric1, 2, 3

1Department of Materials Science and Engineering, University of Connecticut, 97 North Eagleville Road, Unit 3136 
Storrs, CT 06269.
2Department of Chemical and Biomolecular Engineering, University of Connecticut, 191Auditorium Road, Unit 
3222 Storrs, CT 06269. 
3Center for Clean Energy Engineering, University of Connecticut, 44 Weaver Road, Unit 5233 Storrs, CT 06269.
4Institute of Materials Science, University of Connecticut, 97 North Eagleville Road, Unit 3136 Storrs, CT 06269.

Research Open Access

Received Date: February 04, 2014 Accepted Date: March 09, 2014 Published Date: March 11, 2014

Citation: Rishabh Jain, et al. (2014) Tuning of WO3 Phase Transformation and Structural Modification by Reactive Spray 
Deposition Technology. J Nanotech Smart Mater 1: 1-7

*Corresponding author: Rishabh Jain, University of Connecticut, Department of Materials Science and Engineer-
ing and Center for Clean Energy Engineering, 44 Weaver Road, Storrs, CT 06269–5233, USA. Tel: +1–860–465–
6454; fax: +1–860–486–8378; E–mail address: rishabh.jain@uconn.edu

©2013 The Authors. Published by the JScholar under the terms of the Crea-
tive Commons Attribution License http://creativecommons.org/licenses/
by/3.0/, which permits unrestricted use, provided the original author and 
source are credited.

Introduction

Abstract

WO3 nanoparticle thin films were synthesized by Reactive Spray Deposition Technology (RSDT) by varying the length of 
the reaction zone (9–14 cm), flow rate of quench air (0–57 L/min) and substrate temperature (80–400 ˚C). The resulting 
samples were subjected to different annealing conditions (no annealing–500 ˚C). Distinct metastable phases of WO3 such as 
ferroelectric ε–WO3 and the preferential orientation of the three major lattice planes (002), (020) and (200) can be obtained 
using this synthesis technique and the morphology, and microstructure of the films are a decisive function of the synthesis 
process. RSDT has a strong potential to allow the properties of WO3 to be tailored to its desired structure and application. The 
morphology, structure and size of WO3 nanoparticles were probed using, X–Ray Diffraction (XRD), Raman spectroscopy, 
Transmission Electron Microscopy (TEM) with selected area electron diffraction (SAED), and Scanning Electron Micros-
copy (SEM) with X–Ray Energy Dispersive Spectroscopy (XEDS). 

Keywords: WO3 Thin Film; X–ray Diffraction; Phase Transformation; Preferential Orientation; Reactive Spray Deposition 
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Tungsten oxide (WO3) thin films have been a subject of ex-
tensive scientific investigation following the discovery of 
WO3’s gas sensing properties (H2 [1], H2S [2-8], NOX [9-12], 
NH3[13-18], O3[19-22], CO[23-26]) and its suitability for 
use in breath acetone monitors as a tool for non–invasive 
blood glucose quantification[27-30]. The chromogenic capa-
bility of WO3 in presence of ultra violet light, electric cur-
rent[31] or gas[32] has created a whole new opportunity for 
the development of smart windows, optical memory, display 
devices, etc. Other applications include high energy den-
sity microbatteries [33,34], electro–catalysis, optoelectron-
ics, microelectronics, and selective catalysis[35,36]. WO3 is 

a semiconductor material known to exist in multiple poly-
morphs such as tetragonal (α)[37], orthorhombic (β)[38], 
monoclinic (ε and γ)[39], triclinic (δ)[40,41] and so–called 
pseudo cubic[42]. Each of these forms exhibits different elec-
trical, optical and magnetic behaviors which are favorable for 
particular applications. For sensing functions, the WO3 film 
needs to be porous and have a large surface area to enable the 
analytes to diffuse through the film[43]. Acentric nature and 
spontaneous electric dipole moment of ferroelectric ε–WO3 
leads to increased interaction with high dipole moment ana-
lytes such as acetone[44] which is used for medical devices 
sensing the acetone level in human breath in concentrations 
of parts per billion (ppb) for non–invasive blood glucose 
monitoring[29,45]. Photo electrochemical and photo catalyt-
ic properties are enhanced when the film is highly crystalline 
and preferentially oriented in the monoclinic phase because 
this highly crystalline structure will have fewer defects when 
acting as the recombination center and should suppress mu-
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Reactive Spray Deposition Technology

tual e––h+ recombination[46,47]. Polycrystalline WO3 film has 
almost no photochromic sensitivity whereas amorphous WO3 
has high photochromic and electrochromic sensitivity due to 
high surface area[48,49]. However, some phases of WO3 such 
as ε–monoclinic is metastable at room temperature and higher 
temperature, thereby making it challenging to obtain such 
phase by the traditional synthesis processes. Here we have 
demonstrated a one–step flame–based direct deposition tech-
nique to engineer a particular required phase by changing the 
length of the reaction zone in the flame, flow rate of quench air, 
and the substrate temperature. RSDT is a type of flame spray 
pyrolysis system which is employed for synthesizing nano 
scale materials with high efficiency and reduced solvent waste. 
Here we will give a brief description of the RSDT process and, 
the conditions required to achieve a particular phase, and we 
will provide characterization results obtained by Raman spec-
troscopy, SEM, TEM, and XRD that prove the existence of the 
phases. The motivation of this research was to study the particle 
size, crystallinity and crystal structure of the WO3 films grown 
by RSDT by varying the conditions of the experiments. It is 
assumed that the results from this study can be used to obtain 
the configuration of WO3 film demanded by its application.

Reactive Spray Deposition Technology (RSDT) was developed 
by Maric et al. for synthesis of nanoparticle thin films with 
atomic–level precision and control of properties such as phase, 
structure, shape, particle size distribution (0.5–100 nm), den-
sity and porosity, which can employ a broader selection of 
precursors compared to conventional vapor–fed flame reac-
tors[50-66]. RSDT is a single–step, open atmosphere flame 
process for synthesizing nano–materials, whereby nano–par-
ticles are synthesized in the reaction zone of the flame and 
directly deposited on the substrate as a film or collected as 
particles[50-66], thereby eliminating the intermediate steps 
of filtration, drying, and calcination. No waste is generated 
because the solvent is combusted in the flame, yielding CO2 
and H2O. Precise control of particle size and crystallinity can 
be achieved by adjusting flame setup conditions, including 
precursor concentration, chemistry, and flow rate; length of 
reaction zone; equivalence ratio (stoichiometric oxidant and 
fuel flow rate to actual oxidant and fuel flow rate); downstream 
quench air flow rate, and the substrate temperature[53]. In ad-
dition to these conditions, flame dynamics is also dependent 
on the solvent boiling point, enthalpy of combustion of sol-
vent and the combustion nozzle geometry. Results from Roll-
er, et al.[51-52] using RSDT, for Pt based electro-catalysts has 
clearly shown that the process can be adjusted to give precise 
control (< 1 nm) on metallic nanoparticle diameters directly 
deposited onto Nafion® membranes with thickness from ~100 
nm to 10 μm. The reactive spray synthesis of nanoparticles re-
lies on combustion of a solvent which also acts as a fuel and 
aids in the decomposition of a precursor to form nanoparti-
cles. RSDT provides adjustable process variables such as flame 
temperature, stoichiometry, residence time, and downstream 
quenching rates that coupled with solvent and metal precursor 
concentrations, affect particle: nucleation, growth, annealing, 
and oxidation. Since the droplets produced by this process are 

mostly sub-micron – due to energetic inputs of heat, pressure, 
and supercritical propane diluent – the precursor is confined 
to the nanoscale regime during formation. During the particle 
formation process the precursor heats up, decomposes, and 
then undergoes a phase transition to vapor followed by con-
current reduction of the metal ions to  metal or metal oxides.

Figure 1. The setup of Reactive Spray Deposition Technology (RSDT)

Experimental
Synthesis of WO3

An explanation of the RSDT equipment and process is de-
scribed in detail by Roller, et al.[51] . Tungsten hexacarbon-
yl (W(CO)6) was obtained from Sigma Aldrich (Catalogue 
#AC221040100) and was dissolved in a tetrahydrofuran (THF) 
(Fisher Scientific # SHBD3901V). 20 wt% sulfur free liquefied 
propane (Airgas catalogue # PRCP350S) was added to the 
above to form a precursor solution resulting in a final concen-
tration of 5 mM/L W(CO)6, and 16.5 wt% propane. Propane 
assists in the atomization of the precursors by increasing the 
enthalpy of the solution mixture and reducing the droplet size 
due to supercritical expansion. The flow rate of 4 mL/min was 
maintained by using a syringe pump. The precursor solution 
was atomized by a gas–assisted external mixing nozzle (com-
bustion nozzle) by oxygen (5 L/min). Six methane–oxygen 
flamelets (methane and oxygen at 0.5 L/min each) surround 
the capillary end, which ignites the combustible precursor 
mist. Prior to atomization, the precursor solution was heat-
ed to approximately 50–60 ˚C by enclosing the capillary by a 
heating coil. The precursor mist was ignited with a propane 
torch to obtain a bluish–white flame. At approximately 9–14 
cm from the flame, a circular air quench (Exair, Super Air 
Wipe®) with a compressed air flow rate of 28–56 L/min at room 
temperature was positioned. A stainless steel substrate holder 
mounted on an x–y–z platform and having the option of wa-
ter cooling was used for collection of WO3 particles. On the 
substrate holder was mounted a zero diffraction background 
quartz plate (MTI®) on which the film was grown. Quartz was 
selected for various reasons: it can withstand the high tem-
perature required during in–situ XRD, it can be imaged in an 
SEM, it does not have an interfering background in a Raman 
spectrometer, and the film can be scraped off for TEM analysis. 
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Role of air quench
A schematic of the air quench is shown in figure 2. The air 
quench is a circular ring with an internal annular chamber. 
The compressed air at room temperature enters the two noz-
zles and is directed towards that chamber. The chamber has a 
narrow ring nozzle through which the air adopts the coanda 
profile and flows along the angled surface of the air quench. 
This also creates a low pressure region behind the air quench 
causing the entrainment of the surrounding air into the pri-
mary air stream. A 360˚ cone of cold air is formed which 
cools the nanoparticles instantly and prevents growth, ag-
glomeration, and sintering, thereby keeping the particle 
size small and increasing the active surface area. The dis-
tance between the combustion nozzle and the air quench is 
considered the reaction zone and the length of the reaction 
zone is proportional to the residence time of the nano–par-
ticles in the zone. Adjusting the length of the reaction zone 
and the flow rate of compressed air gives unique conditions 
to obtain an assortment of phases and structures of WO3. 

Figure 2. Schematic of air quenching mechanism in RSDT

Characterization
In–situ X–ray diffraction patterns of WO3 film were recorded 
in air at 30 ˚C, 150 ˚C, 250 ˚C, 300 ˚C, 350 ˚C, 400 ˚C and 
500 ˚C on a Bruker D8 advanced powder diffractometer using 
CuKα radiation. Heating rate of 5 ˚C /min was used with a 
hold time of 1 hr at the temperature of the scan. Crystallite size 
was measured by using Debye Scherrer method. Raman spec-
tra were obtained with a Renishaw Ramascope micro–Raman 
spectrometer fitted with a reflected light microscope using a 
50 mW laser (514.5 nm) and exposure time of 30 s at ambient 
conditions. Instrument alignment was optimized using a 519 
cm–1 signal of a silicon wafer. Raman measurements were per-
formed since this technique is well known to give the “finger-
print” of WO3 material[67]. The spectra were obtained at room 
temperature in ambient atmosphere in the spectral range be-
tween 100 and 1000 cm−1. SEM micrographs were collected 
on an FEI ESEM Quanta 250 with a field emission gun with 
an EDAX XEDS system. TEM micrographs and selected area 
electron diffraction (SAED) pattern of WO3 particles were ob-
tained on a 120 kV FEI Technai T12 S/TEM with a LaB6 source 
equipped with an EDAX XEDS system. 300 mesh Cu grids 
coated with holey/thin carbon films (Pacific Grid Tech Cu–

300HD) were used. A small portion of the film was scraped off 
from quartz plate and was sonicated with ethanol. Few drops of 
the resulting solution were dropped on the grids and air dried 
before they were placed in the UHV chamber of the TEM. 
The TEM sample was prepared from the crystalline WO3 film. 

Results and Discussion
X–ray diffraction
γ and ε WO3 with different phase ratio was synthesized in 
four different set of conditions in RSDT as described in ta-
ble 1 by altering the length of the reaction zone, flow rate of 
quench air and temperature of substrate. Figure 3 shows the 
X–ray diffraction spectra for the samples A, B, C and D. It 
is clear from the figure that very different structures of WO3 
were obtained by changing the conditions of the flame. All 
four samples were monoclinic, the most dominant structure 
of WO3 and which can be indexed to ICDD#00–043–1035 
(space group P21/n). Sample A is the as–prepared sam-
ple with no post annealing, and it shows a well crystalline 
structure with (002) preferential plane oriented at 2θ = 23.1 
˚. This could be due to the high temperature of particles in 
the absence of quench air which can cause the migration of 
WO3 atoms towards the lower energy nucleation sites[68]. 

Figure 3. X–ray diffraction of samples A, B, C, and D showing different 
crystallographic orientations and phase ratio.

All the other samples (with the exception of A) were found to be 
amorphous in nature because the quench was close to the nu-
cleation site. This amorphous structure could arise because the 
particles are air quenched as soon as they are produced from 
the flame and the temperature of the particles and substrate 
did not exceed 200 ˚C. The amorphous samples were ther-
mally annealed in the high temperature stage of the XRD–the 
crystallization steps and the corresponding XRD patterns can 
be found in the supplementary information. Thermal anneal-
ing of amorphous WO3 causes the particles to become crys-
talline and it also changes the phase ration, grain size, poros-
ity, density of adsorption sites and pore volume[43]. It is clear 
from in–situ XRD that the crystallization of the WO3 particles 
started at 350 ˚C. Sample B was prepared with no air quench; 
however the substrate temperature was maintained at 200 ˚C 
by the water cooled substrate holder and the sample thereby 
retained an amorphous structure. By comparing the XRD  
pectra of sample B with that of Wang, et al. [29] and Righet-
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toni, et al. [45] it can be concluded that the sample is mostly 
ε–WO3, the metastable phase at room temperature. Sample C 
is oriented preferentially along the (200) direction. This pref-
erentially–oriented crystallization was also observed by Sun, et 
al. [69] and Zhifu, et al. [43] who prepared their films by physi-
cal vapor deposition (PVD). Sun et al. suggested that preferen-
tial orientation along the (200) direction happened to reduce 
the lattice mismatch with the sapphire lattice on which the film 
was grown. According to Zhifu, et al. the cause of this behavior 
was the column–like accumulation of the WO3 species dur-
ing the sputtering process at the operating pressure 20 Pa. The 
(200) orientation could also form in–situ during the annealing 
process. Sample D is oriented along the (020) plane direction, 
and sample A is oriented along the (002) direction, as was also 
reported by Garavand, et al. [70] Guo, et al. [71] and Jing, et 
al. [46]. Guo, et al. evaluated the photoelectrochemical activity 
and photoconversion efficiency of self–assembled nanoporous 
WO3 and WO3 film with preferential orientations at (002) and 
(020), respectively. They found that the photocurrent of the 
(002) plane–oriented WO3 was 9 times the value and the pho-
toconversion efficiency was 4.57 times higher than those of 
(020) plane–oriented WO3. Furthermore, (002) WO3 was more 
favorable in absorption and redox of pollutants than (020) 
WO3. Jing, et al. found that the (002) preferential orientation of 
WO3 resulted in higher photocatalytic degradation of NO[46].

Figure 4. Raman spectroscopy for samples A, B, C, and D showing mostly 
monoclinic structure.

Table 1. Synthesis conditions of WO3 in Reactive Spray Deposition Tech-
nology 

The spectra are similar to those of the monoclinic WO3 as ap-
parent from the strong peaks at 808 and 715 cm–1. The peak at 
450 cm–1 can be assigned to the quartz substrate as determined 
by the scan of quartz substrate without any film. The intensity 
of the substrate peak is different for the samples because of the 
difference in the thickness of the film. A relatively strong peak 
is obtained at below 150 cm–1 for all the samples which can in-
dicate the O–O deformation mode[72]. Salje et al. has obtained 
the Raman spectra of the monoclinic (γ and ε) WO3 and is re-
ported in reference[72],[73]. After comparing with Salje, et al. 
it can be assumed that the peaks at 205, 310, 372, 394, 427, 645, 
680, 697cm–1 can be assigned to ferroelectric ε–WO3 while 
peaks at 327, and 716 cm–1 are for γ–WO3 only. There is clearly 
an overlap between γ and ε WO3 as evident from the spectra.

Figure 5. Scanning Electron Microscopy micrographs of WO3 films deposited by RSDT under condition A, B, C and D. (Top: as deposited, Bottom: after anneal-
ing at 500 ˚C)

Figure 4 shows the Raman scattering measurements of un-
treated sample A and the post–annealed samples B, C and D 

(since the Raman signal of WO3 cannot be obtained for amor-
phous structure). 

Electron Microscopy
Scanning Electron Microscopy

Figure 5 shows the SEM micrographs of the WO3 film as de-
posited (top) and after annealing at 500 ˚C. Films A and D 
are very homogeneous while B and C shows particle ag-
glomeration. As is clear from the figure, the size of the grains 
are in the order B>D>A>C. Pores and cracks can be seen in 

Raman Spectroscopy
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samples A and D while samples B and C show uniform mor-
phology. It is interesting to see that in samples A and D, the 
pores and cracks have grown in size after annealing at 500 ˚C. 
This same phenomenon was observed by Santato, et al. and 
could be due to the elimination of organics from the film sur-
face after heat treatment[74]. Increase in porosity of the films 
is advantageous to the sensing function of WO3 since this 
favors diffusion of analytes in the bulk of the film. The im-
ages indicate high quality of WO3 films deposited by RSDT. 

Transmission Electron Microscopy
Figure 6 shows the bright field TEM micrographs along with 
the SAED pattern of samples A–D after post annealing. All 
samples were polycrystalline, as evident from the SAED pattern 

Figure 6. Transmission Electron Microscopy micrographs of WO3 films deposited by RSDT under conditions A, B, C, and D along with their selected area 
electron diffraction (SAED) patterns.
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