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Introduction

Abstract

Fabrication of titanium dioxide nanotubes (TNTs) and zirconia dioxide nanotubes (ZrNTs), through electrochemical ano-
dization method on metal substrate, has shown great potential in biomedical purposes. As a modified surface, nanotubular 
surfaces promote cellular interaction compared with conventional flat or polished surfaces. In this study we review different 
aspects of improvements achieved by growing metal oxide nanotubes. ZrNTs and TNTs have been shown to be promising 
candidates for application as orthopedic or dental implants. This paper presents an overview of anodization techniques used 
to produce nanotubular structures (specifically TNTs), subsequent properties of these anodized surfaces, and eventually in 
vitro as well as in vivo biological responses pertinent to clinical applications.
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Different categories of biomaterials have been employed to 
repair bone injuries including metals, polymers, ceramics, 
as well as their composites and natural materials. Although 
polymers have shown appropriate primary fixation, they are 
potential to release monomers in the body which results in 
inflammation and degradation of implant [1]. Ceramics and 
bioglasses provide higher biocompatibility and compres-
sion strength compared to biopolymers; however, they suf-

fer from low fracture toughness and higher elastic modulus 
compared to bone. Ceramics, in the form of nanoparticles, 
are employed in polymeric matrix in order to fabricate com-
posites that benefit from advantages of both ceramics and 
polymers at the same time [2-4]. Biometals, such as stainless 
steel and cobalt chromium alloy, have high mechanical prop-
erties but they release nickel and are potential to cause al-
lergenic response and adverse reaction due to corrosion [5]. 

Compared with other biometals used as implants, 
titanium and its alloys have recently attracted attention [6] 
as they provide great biocompatibility in terms of low ion 
release [7], excellent corrosion resistance [8], great mechani-
cal properties in terms of high hardness, low elastic modulus 
and  low density  [9-14]. Surface characteristics initiate from 
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presence of a native oxide layer on the surface. When titanium 
is exposed to air, a layer of titania (TiO2) with thickness of 
2–5 nm is formed on its surface that protects the bulk mate-
rial from corrosion [15] and makes it bioinert [16]. However, 
in minor cases they are encapsulated by fibrous tissue in vivo 
and lack osteointegrity [17]. In addition low pH and presence 
of lipopolysaccharide in saliva enhances corrosion rate of tita-
nium dental implant [18]. In order to develop bioactivity and 
osteointegration, different surface modifications have been 
performed.

Anodization technique of titanium leading to the for-
mation of Titanium Oxide Nanotubes (TNTs) on the surface 
has attracted much attention lately [19-25]. The anodized TNT 
surface possesses promising potentials for biomedical applica-
tion [26], since it has shown to be able to increase osteoblast 
cell adhesion and desirable functions [19-21], increase growth 
of hydroxyapatite, [27, 28] and influence cellular behavior to 
enhance tissue integration [29]. 

In this study, different mechanisms of formation of 
TNT are reviewed and anodization technique is elaborated as 
the most investigated method. Cellular response to TNTs, with 
an emphasis on bone cells behavior, is taken into considera-
tion. It is discussed how cellular response can be controlled by 
different parameters including crystallinity, roughness, wetta-
bility and TNTs dimension.  Anodization of titanium alloys is 
briefly explained and finally success of nanotubular implants 
in in vivo experiments and their potential for drug release pur-
pose is overviewed.

Nanotube Development
In order to develop bioactivity and osteointegration, 

different surface modifications of titanium have been done in-
cluding hydroxyapatite and calcium phosphate coating [30]. 
However these coatings result in delamination at hydroxyapa-
tite and titanium interface because of difference in mechanical 
moduli [31]. Later studies demonstrated that early healing of 
pre-implant soft tissue is affected by topography of titanium 
surface [32]. Recently surface of implants have been modified 
by taking advantage of nanotechnology. Titanium nanostruc-
tured surfaces provide more surface area for protein adsorp-
tion and as a result more cellular interaction [33]. Being in-
tegrated with bulk substrate, they also prevent delamination 
deficiency [34] and improve osteointegration of the implant.

Fabrication of TiO2 nanotubes

Assisted-template method

Assisted-template method is performed either by posi-
tive or negative templates. A positive template is used for coat-
ing oxide layer on the outer surface of template while a nega-
tive template is used to coat its inside porosities [35]. For both 
types of templates, Anodic Aluminum Oxide (AAO) mem-
brane is commonly used as template which holds scattered 
cylindrical pores with uniform dimensions in its structure 
(Figure 1) [36-39].

Figure 1: Fabrication of nanotubes via a porous hard template such as 
AAO.

Hydrothermal treatment
Hydrothermal treatment method is started by NaOH 

treatment of TiO2 nanoparticles. Electrostatic repulsion of 
the charge on sodium results in extension of TiO2 nanopar-
ticles to form nano-sheets. After washing with HCl, electro-
static charges are removed and sheets scroll to become TiO2 
nanotubes [37]. A major advantage of this method is obtaining 
pure phase TiO2 nanotubes with good crystallinity [36]. Dis-
advantages include long reaction times and the application of 
NaOH, which can cause production of nanotubes that are in 
powder form of random alignment [36, 37].

Anodization
In this review we have focused on anodization as the 

most investigated method of fabricating nanotubes since it 
has shown to be well promising in order to enhance desirable 
surface characteristics and cellular response. Through this 
method, surface of the material is modified by formation of 
nanotubes while the bulk material is employed as anode of an 
electrochemical cell (Figure 2). Advantages of this method in-
clude production of nanotubes with ordered alignment, high 
aspect ratio and possibility of controlling TNTs dimensions 
by varying the anodization conditions [36,37]. Anodization 
of pure titanium leads to formation of a uniform nanotubular 
layer on the substrate. When titanium alloys, Ti6Al7Nb and 
Ti6Al4V are anodized, the nanotubular structure is produced 
on alpha phase (Al-rich phase) with diameter of 100 nm and 
spacing of 50 nm. However, the beta phase (Nb-rich phase of 
Ti6Al7Nb and V-rich phase of Ti6Al4V) behaves differently 
for these alloys during anodization. Beta phase of Ti6Al7Nb 
produces nanotubes with diameter of 50 nm while beta phase 
of Ti6Al4V is dissolved [40].

Figure 2: Electrochemical etching anodization set-up for the synthesis of 
TNT. Reproduced by permission of The Royal Society of Chemistry [41].  
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Mechanism of nanotube formation during anodi-
zation

When valve metals are used as an anode of electro-
chemical cell different oxide layer structures may be formed 
depending on anodization condition. Theses morphologies 
include electropolished surface, compact anodic oxides, rapid 
(disorganized) oxide nanotube and ordered nanoporous or 
nanotubular layers. Therefore only by establishing particular 
conditions, anodization can be applied to produce ordered po-
rous layer or aligned nanotube structure on some of transition 
metals including Ti. When conditions are proper for nanotube 
formation, anodization begins by dissolution of valve metal in 
electrolyte as cation [42]. The dissolved cation reacts with O2 
from electrolyte and forms an oxide layer which is deposited 
on metal surface. Oxide formation continues at metal-oxide 
interface. As the thickness of oxide layer increases the field de-
creases and consequently the process is stopped. Therefore the 
thickness of compact layer is dependent on applied voltage. 
During the next stage, pores are formed on the surface of com-
pact oxide layer that gradually grow into tubular shape (Figure 
3). Since nanotube wall boundaries are etched the tubes be-
come separated. As the anodization duration increases tubes 
are elongated. Finally a steady state condition is established 
under which a competition exists between oxide formation at 
the bottom of tubes and cation dissolution at electrolyte inter-
face. Length remains constant under steady state condition [6, 
43, 44].

Several reasons have been hypothesized for formation 
of tubular structure from compact oxide layer. One hypothesis 
explains that the surface fluctuation that exists on compact ox-
ide layer enhances the electrical field. As a result transporta-
tion of ions is accelerated in these regions and field enhanced 
dissolution causes formation of pores on compact oxide layer. 
Another hypothesis is based on volume expansion when metal 
transforms to oxide. Increase of volume causes stress at the in-
terface of metal/oxide that leads to upward flow of oxide and 
formation of nanotubes. Local acidity in the tubes is also as-
sumed as a factor that enhances tubular formation [43, 44].

Presence of fluoride ion in electrolyte greatly affects the 
produced surface structure. Low concentration of fluoride in 
electrolyte leads to formation of compact oxide layer. Fluoride 
ion causes chemical etching of the oxide layer and its pres-
ence at intermediate concentration is required for TiO2 tubu-
lar formation from compact oxide. However, it also dissolves 
Ti4+ and forms TiF6 complex in water. Therefore, when its 
concentration is high, the surface is electro-polished. Having 
small ionic radius, fluoride migrates faster than O2 in oxide 
layer and accumulates in oxide/metal interface. During plastic 
flow of oxide to form tubular structure, accumulated fluoride 
moves to tube wall boundaries. Later fluoride ion causes etch-
ing of boundaries and separation of tubes [45].

In fluoride containing electrolytes, the top part of TiO2 
nanotubes is gradually etched and as a result a V-shaped pro-
file is created. Also hexagonal porous structure of the base of 
nanotubes transforms into tubular structure at the top cross-
section. Application of non-aqueous electrolytes such as glyc-
erol or ethylene glycol leads to formation of highly ordered 

TiO2 nanotubes. The highest order is achieved under maxi-
mum current. Several other valve metals, such as Ta, Hf, Mg, 
Fe, W, Nb, and Zr can be formed into organized nanotubular 
or nanoporous structures by applying principles used for for-
mation of TiO2 nanotubes. The nanostructure produced on 
the metals is amorphous which can be annealed to form crys-
talline phase [43, 44].

Figure 3: Schematic illustration of TiO2 nanotube formation [46]. Repro-
duced from Jin et al.

In Vivo Performance of Surface With Na-
notube
Cellular response to TiO2 nanotubes

As a biomaterial is exposed to in vitro condition or in 
vivo physiologic environment, proteins of cell culture media 
or body fluids adsorb to its surface in less than a second. The 
adsorbed protein functional groups (ligands), interact with 
surface receptors of the cells (integrins) [47]. Desirable cellu-
lar response of different cell lines is increased on TNT sur-
faces compared to flat machined surface. Such enhancement 
is due to increase of surface area that provides more area for 
cell-substrate interaction, more surface energy, more protein 
adsorbtion and as a result higher cell adhesion [9, 34, 48-51]. 
In addition, nano-topography of surface mimics natural envi-
ronment for cells and provides integrin clustering. In the hu-
man body, bone cells interact with the fluid that flows around 
them in interstitial spaces [52]. Presence of space between 
tubes can be helpful for transport of waste and nutrients and 
therefore cell metabolism [34]. Wettability is also sharply in-
creased after anodization of flat titanium which enhances cell 
adhesion [53]. Hydroxyapatite adhesion is higher on TNTs 
surfaces compared with non-anodized surfaces [54]. The me-
chanical interlocking between the hydroxyapatite coating and 
the nanotubular titanium oxide layer improves cell adhesion. 
Hydroxyapatite formation increases as thickness of oxide layer 
increases and it is higher on crystalline structure compared to 
amorphous structure [27]. In several studies osteoblast cells 
and mesenchymal stem cells behavior on TNTs have been 
investigated. The effect of other factors including nanotubes 
diameter, crystallinity and wettability is also verified as dis-
cussed in following sections.

Osteoblast cells
Behavior of osteoblasts cells on the TiO2 nanotubes is 

improved compared to the non-anodized titanium surface. 
Increase in surface roughness, increases hydrophilicity and 
surface energy and as a result improves bone-cell interaction. 
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Experiments also show that filopodia of the osteoblasts grow 
into nanotube porosities and provides an integrated structure 
(Figure 4) [53]. Effect of nanotube structure on attachment, 
growth and differentiation of human osteoblast is investigated 
by 3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium 
Bromide (MTT) assay and Alkaline phosphatase (ALP) meas-
urement in previous experiments. Results show that surface 
modification increases cell adhesion, cell proliferation and os-
teoblast expression. Cells seeded on nanotube structure show 
filamentous network structure and formation of nodules and 
increased Extracellular Matrix (ECM) [10]. The possibility of 
enhancing the TiO2 nanotubes bioactivity is verified by expo-
sure to NaOH solution. The findings indicate that the sodium 
titanate nanostructure formed on the edge of the anodized 
TiO2 nanotubes can increase in vitro hydroxyapatite forma-
tion [48].

Figure 4: Human osteoblast cell attaches to nanotubular surface while 
filopodia penetrates into porosities as anchorage sites [10]. Reproduced 
with permission from John Wiley and Sons Inc.

 Mesenchymal stem cell
Being derived from bone marrow, Mesenchymal Stem 

Cells ( MSCs) are pluripotent cells that have the potential to 
differentiate into different cell types including osteoblasts [55]. 
It is shown that nanotubes with size range between 15 to 30 
nm provide proper substrate for MSC interaction. An increase 
of focal contact formation was observed on nanotubes smaller 
than 30 nm and increased cell proliferation and osteoblast dif-
ferentiation was observed on 15 nm nanotubes. Also differen-
tiation of Hematopoietic Stem Cells (HSC) into osteoclasts in-
creased in nanotubes below 30 nm. Similar observations were 
found from differentiation of MSCs to osteoblasts [53].

Thus the diameter of nanotubes drastically affects cellu-
lar response. Previous studies conclude that stem cells dramat-
ically respond to change in size of TiO2 nanotubes in range of 
15 to 100 nm. More importantly they suggest that small nano-
tubes having diameter less than 30 nm, increase cell adhesion, 
proliferation, migration and integrin clustering/focal contact 
formation. These reactions tend to decline significantly with 
increasing pore size [49, 56-59].

Experiments by Schumki et al. led to the conclusion 
that differentiation, protein aggregation, lamellipodia exten-
sion and filopodia extension was higher on smaller nanotubes 

[49, 57-59]. However, a recent study concludes that differentia-
tion, protein aggregation, lamellipodia extension and filipodia 
extension increases as nanotube diameter increases [56]. Au-
thors of this study assume that on 100 nm nanotubes, hMSCs 
need to struggle to find TiO2 region where more protein ag-
gregates have been deposited. Therefore they form more elon-
gated shape and their filopodia is extended. These results are 
compatible with results of McBeath et al. who reported that 
decreasing cell density increases osteoblastic differentiation. 
These data are also compatible with the hypothesized concept 
that increasing physical stress increases stem cell differentia-
tion.

Bauer et al. investigated the effect of change in dimen-
sion of nanotubes on MSCs response attachment and prolif-
eration. They concluded that change in size is more effective 
on cell response compared to change in surface chemistry and 
length size [36].

Chondrocyte 

Similar to osteoblasts, chondrocytes attachment on 
anodized TiO2 nanotubes increases compared with unano-
dized Ti. Nanotubular structure increases surface area and 
initial protein adsorption, therefore interaction and adhesion 
of chondrocyte is increased. Glycosaminoglycan secretion in 
the culture medium is reported to increase and chondrogenic 
markers such as aggrecan and collagen type II are also shown 
in higher level. Although the cells produced dense ECM fibrils, 
they retained their circular morphology [34, 60]. 

Fibroblast and keratinocyte 

Biomaterials that are implanted as transcutaneous 
device interact with both the fibroblasts of dermal (internal) 
layer of the skin, and keratinocytes of the epidermal (exter-
nal) layer. The responses of fibroblasts and keratinocytes on 
TiO2 nanotubes have been investigated to verify its potential 
for transcutaneous application. Studies indicate that the nano-
tube topography provides a proper substrate for interaction of 
fibroblasts cells but not for keratinocytes cells [61,62]. 

Compared to the smooth titanium substrate, adhesion 
of fibroblasts is increased on nanotubular surface while ke-
ratinocytes is decreased. Similarly MTT assays show increases 
of cell proliferation rate for fibroblasts but decreased of prolif-
eration for keratinocytes on TiO2 nanotubes substrate com-
pared with the smooth substrate. In addition, cytoskeleton re-
organization improvement and membrane protein expressions 
were observed for fibroblasts cells while keratinocytes cells 
showed lack of cytoskeleton reorganization [61, 62]. Indirect 
immunofluorescence staining characterizing was performed 
for specific marker proteins to investigate cell proliferation. 
The results show an increase in specific marker expression of 
fibroblasts cells and decrease in specific marker of keratino-
cytes [61, 62].

Fibroblast and keratinocyte 

TiO2 nanotube structure has the potential to be used as 
a vascular stent material. As a vascular stent device, a biomate-
rial interacts with smooth muscle cells and endothelial cells. 
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Endothelial cell growth is enhanced on nanotubular morphol-
ogy while MOVAS smooth muscle cell show little tendency 
to proliferate. Nanotubes maintain the differentiated state of 
muscle cells and their non-proliferative phenotype while they 
allow arranged changes in endothelial cell locomotion, cy-
toskeleton organization and cell-to-cell communication [63]. 
In order to assess thrombogenicity nanotubular surface, the 
release of nitrogen oxide and endothelin-1 is investigated in 
presence of nanotubular structure. Nitrogen oxide causes va-
sodilatation and inhibits platelet aggregation while endothe-
lin-1 causes vasoconstriction and enhances platelet aggrega-
tion. The results show that nitrogen oxide and endothelin-1 
release are balanced in a way that nanotubular structure have 
antithrombotic effect [63].

Schmuki et al [64] assessed differentiation of mesen-
chymal cells to endothelial cells and smooth muscle cells on 
TiO2 nanotubes. In agreement with their previous studies, 
they concluded that 15 nm diameter maximizes differentiation 
of mesenchymal cells to endothelial cells and smooth muscle 
cells.

Antibacterial effects 

Anodization of pure titanium and Ti6Al4V alloy sur-
faces, results in decrease of bacterial attachment and biofilm 
formation compared to non-anodized surfaces in vitro and 
in vivo. Application of higher voltages leads to enhanced an-
tibacterial effects. Treatment with high voltage also results in 
increased proliferation of osteoblasts and fibroblasts [65]. The 
most robust antibacterial response of TNT surface is reported 
to be achieved on 80 nm diameter nanotubes after heat treat-
ment [66]. Antibacterial property of TNTs is enhanced follow-

ing exposure to UV light illumination [67]. In addition, TNTs 
can be loaded with antibiotics in order to further reduce bacte-
rial adhesion [68]. 

Effect of anodization parameters 

Effect of diameter: Diameter of the nanotubes drastically af-
fects cellular response. Biochemical response of cells on na-
notubular surface is dependent on how they are stimulated 
mechanically by nanotubes. Diameter of nanotubes defines 
position of transmembrane integrins of attached cells. Integ-
rins transmit the force to actin filaments and cause cytoskeletal 
tension and consequently cell morphology and signaling is af-
fected [69]. Several studies have investigated the effect of vari-
ation of nanotubes diameters in the range of 15 to 100 nm on 
biological response. Although results of most studies show that 
adhesion of osteoblasts is higher on smaller nanotubes, con-
tradictory results are reported for proliferation, ALP activity 
and other cell responses (Table 1). Yu et al. evaluated effect of 
change in diameter of anatase-TiO2 nanotube layers produced 
by anodization on adhesion, proliferation and differentiation 
of MC3T3-E1 preosteoblasts. The cell proliferation increased 
with increasing diameter of nanotubes. According to cell ad-
hesion and ALP activity it was concluded that tubes with di-
ameter of 20–70 nm provide better condition for integrin clus-
tering [70]. Another study showed that greatest degree of cell 
adhesion and proliferation happens on 30 nm TiO2 nanotubes 
and increasing the diameter up to 70–100 nm decreases prolif-
eration and cells show elongated shape and higher ALP levels 
(Figure 5) [34]. Effect of length of the nanotubes on cellular 
response is not explored as much as effect of tubes diameter. 
Tube length does not seem to affect the cell behavior [58].

Figure 5: Clustering of integrins, formation of focal adhesions, MSCs spreading, actin polymerization, and osteogenic differentiation are increased on a 
nanotubular surface with 15 nm lateral spacing, in presence of BMP-2 signaling [59]. Reproduced with permission from John Wiley and Sons Inc.
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Anodization Condition "Annealing 
Condi-
tions"

Cell Type Cell Culture 
Duration

Effect of TNT Size Ref

"Anode: Titanium foil Cathode: 
Platinum  
Electrolyte: 1M H3PO4 and 0.5 wt 
% HF 
Duration: 3h 
Voltage: 5 to 25 V"

450 °C for 
3 h

MC3T3-E1 2h before Cell ad-
hesion. 24, 48, and 
96h before MTT. 
1, 2, and 3 weeks 
for ALP activity. 3 
week before Aliza-
rin R-staining.

Diameter of 20–70 nm 
enhanced cell adhesion, 
alkaline phosphatase activ-
ity, and mineralization. The 
proliferation increased with 
increasing tube diameter 
from 20 to 120 nm.

[70]

"Anode: Titanium foil 
Cathode: Platinum 
Electrolyte: 1:7 volumetric ratio of 
acetic acid to 0.5% w/v hydrofluoric 
acid in water  
Duration: 30 min 
Voltage: 5, 10, 15 and 20 V"

500 °C for 
2 h

MC3T3-E1 2h, 12h, 24h, 48h, 
72h and 7d for cell 
counting. 24h and 
48h for MTT and 
ALP.

30 nm nanotubes enhanced 
osteoblast adhesion, while 
70–100 nm nanotubes pro-
vide a lower population of 
cells with elongated cellular 
morphology and enhanced 
alkaline phosphatase levels.

[34]

"Anode: Titanium sheet 
Cathode: Platinum 
Electrolyte: 0.5 wt % hydrofluoric 
acid and acetic acid volumetric ratio  
7:1 acid in water  
Duration: 30 min 
Voltage: 5, 10, 15 and 20 V"

500 °C for 
2 h

hMSCs 2h, 48h for Cell 
adhesion. 3 weeks 
for osteogenetic 
markers micros-
copy.

30 nm diameter nanotubes 
enhanced adhesion, while 
70 to 100 nm diameter 
nanotubes show stem cell 
elongation and selec-
tive differentiation into 
osteoblast-like cells.

[56]

"Anode: Titanium sheet 
Cathode: Platinum 
Electrolyte: 1 M H3PO4 with addi-
tion of 0.3 wt% HF 
Duration: 1h 
Voltage: 1 V up to 20 V"

hemat-
opoietic 
stem cells 
(HSCs), 
human 
osteoblast-
like

2h, 48h for Cell 
adhesion. 3 weeks 
for osteogenetic 
markers micros-
copy.

Diameters between 15 and 
100 nm were verified. 15 
nm supports HSCs differ-
entiation into osteoclasts, 
adhesion and osteoblast 
proliferation.

[57]

"Anode: Titanium foil 
Cathode: Platinum 
Electrolyte: 1 M H3PO4 with addi-
tion of 0.3 wt% HF 
Voltage: 1 V up to 20 V"

Rat mes-
enchymal 
stem cells

2 weeks before 
analysis by immu-
nocytochemistry. 3 
and 6 days before 
cell counting.

Diameter less than 30 nm 
with a maximum at 15 nm 
enhanced integrin cluster-
ing/focal contact formation 
and cellular activities.

[49]

"Anode: Zirconium and titanium 
foils  
Cathode: Platinum 
Electrolyte: For Zr, 1 M (NH4)2SO4 
with the addition of 0.15 M NH4F. 
For Ti, 1 M H3PO4 with the addi-
tion of 0.125 M HF"

Rat mes-
enchymal 
stem cells

1 day before cell 
adhesion and 3 
days before cell 
proliferation.

Both materials provide 
enhanced cell adhesion and 
proliferation with nanotube 
diameters of 15–30 nm.

[58]

"Anode: Titanium foils  
Cathode: platinum 
Electrolyte: 1 m H3PO4 with addi-
tion of 0.12 M HF  
Voltage: 1 and 20 V"

mesenchy-
mal stem 
cells

24h for cell count-
ing. 2 weeks in 
differentiation 
medium before 
immunocyto-
chemistry.

Differentiation is enhanced 
on 15 nm but not on 100 
nm BMP-2-coated nano-
tubes.

[59]

Table 1: Effect of nanotube diameter on cellular behavior
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Effect of crystallinity: Crystallinity, the degree of structural 
order, is a surface factor that affects cell behavior. Under most 
anodization conditions as formed TiO2 nanotube have amor-
phous structure. Annealing at 450 °C and 600 °C for 3h leads 
to formation of different crystalline phases of anatase and ru-
tile respectively [71-73]. Relative amount of anatase forma-
tion is higher for the samples anodized with a higher voltage 
compared to the samples anodized at lower voltage [65]. Crys-
tallized phase of substrate increases hydrophilicity [74]; and 
consequently, enhances desirable responses of cells cultured 
on it [75].  MC3T3-E1 preosteoblasts activity and tendency to 
spread increases as nanotubes amorphous structure changes to 
pure anatase and is maximized when pure anatase transforms 
to anatase-rutile. Not only cell proliferation increases with 
increasing annealing temperature but also apatite mineraliza-
tion and corrosion-resistance is maximized on rutile structure 
(Figure 6) [9, 76]. Highest amount of filopodia extension oc-
curs on anatase structure [76] while filopodia formation is 
maximized on anatase [9]. Cell adhesion increases as amount 
of present fluoride increases. Annealing nanotubes decreases 
the amount of fluoride and cell numbers [64].

Figure 6: Schematic illustration of TiO2 nanotube formation [46]. Re-
produced from Jin et al.

Transformation from amorphous to anatase structure 
slightly increases Yang modulus and hardness while trans-
formation from anatase to rutile sharply increases theses me-
chanical properties. Since high hardness and low Yang modu-
lus is desirable for biomedical application, an anatase/rutile 
structure is suggested to be utilized to optimize mechanical 
properties [76]. Yang modulus is also influenced by diameter 
and wall thickness of nanotubes [22].

Effect of roughness: Roughness is increased on nanotube 
structure compared to smooth titanium as measured by AFM 
[9]. Effect of surface topography is shown to be higher com-
pared to crystallinity and surface chemistry [64]. Increasing 
voltage of anodization slightly increases surface roughness 
and biological response is affected to some extent by surface 
roughness variance in nano scale [65]. 

Roughened surface of titanium in micro scale, com-
pared to flat surface, is anticipated to provide mechanical in-
terlocking for long time. In addition cell functions such as cell 

adhesion and gene expression are promoted after acid etching 
[77]. The micro-nano scale structure produced by anodization 
of roughened titanium surface mimics structure of natural 
bone and has shown to increase hydroxyapatite formation and 
protein adsorption [78].

Effect of wettability: Wettability is another factor that affects 
osteoblast behavior. Water contact angle is decreased after 
anodization [65]. Surface of titanium becomes hydrophilic 
after anodization and hydrophilicity further increases when 
anodized surface in annealed. Interestingly, nanotubular sur-
face loses part of its hyrophilicity when it is exposed to air for 
a period of three months. Ambient atmosphere affects wet-
tability probably through alkane contamination and organic 
contaminants [79]. Super-hydrophilic TiO2 nanotube become 
hydrophobic when coated with a monolayer of octadecylphos-
phonic acid. Comparison of mesenchymal stem cells adhe-
sion, spreading and growth on the unmodified nanotubes with 
modified nanotubes shows that coating diminishes effect of 
tube diameter and hydrophobicity causes decrease of prolif-
eration [80].

Figure 7: Staining actin cytoskeleton of MC3T3-E1osteoblast on: (a) 
smooth surface, (b) non-annealed nanotubular surface, nanotubular 
surfaces annealed at (c) 450 °C and (d) 550 °C.  Compared with the 
smooth and the non-annealed nanotubular surfaces, annealed surfaces 
show higher regular arrangement [9]. Reproduced with permission 
from John Wiley and Sons Inc.

Controlling TNTs Dimensions
TNT dimensions can be controlled by optimizing dif-

ferent parameters including electrolyte composition, electro-
lyte pH, type of electrolyte, voltage magnitude and anodiza-
tion duration [34, 81-83]. Also agitation speed of electrolyte, 
temperature and the ratio of cathode-to-anode surface area 
affect morphology of TNTs [84]. Diameter of TNTs increases 
as either applied voltage or anodization duration increases 
(Figure 8). Length of TNTs can be increased decreasing acidity 
and fluoride concentration [44]. As pH is increased the time 
taken for nanotube formation increases; therefore, fabricated 
nanotubes are longer [85]. Anodization duration slightly af-
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                                  Time
V

4h
(μm)

8h
(μm)

16h
(μm)

20 V 0.589 1.07 1.39

40 V 1.443 4.53 6.11

60 V 5.493 6.75 10.08

Table 2: Effect of anodization time and voltage on TNT length.

fects diameter but length of TNTs is gradually increased over time before a steady state condition is established under which 
length remains constant (Table 2). As fluoride ion concentration increases in electrolyte solution, dissolution rate of the oxide 
wall is enhanced and the wall thickness is decreased [86]. Length of the nanotube fabricated at different conditions varies from 
200 nm to 360 nm, the wall thickness of the nanotube changes from 5 nm to 34 nm, and tube diameter varies from 12 nm to 180 
nm [87].

Figure 8: SEM images of TNT fabricated during varying durations [88].

Table 2: Effect of anodization time and voltage on TNT length.  

Electrolyte composition
The various electrolytes used for nanotubes fabrication are 
categorized into three groups: (i) acidic aqueous solution 
containing fluoride ion, (ii) buffered aqueous solution and 
(iii) non-aqueous solution containing fluoride ion and in 
some cases a low amount of water [6]. When non-aqueous 
electrolyte (organic electrolyte) is employed, longer nano-
tubes are formed over a longer period of time compared to 
aqueous electrolyte. This is because an organic electrolyte 
contains less amount of oxygen compared with an aqueous 
solution and chemical dissolution of oxide is dependent on 
the water content [89]. Length of TNTs fabricated in ethyl-
ene glycol is maximized and reaches up to 45 µm when solu-
tion contains 2 vol% H2O, 0.2 wt% NH4F and 60 V is applied 
for 18h [90]. Variation in amounts of H2O and NH4F caused 
decrease of length.

Increasing anodization duration up to 18h elon-
gates tubes but no significant increase in length is observed 
after 18h. In another study the electrolyte consisted of 98 
vol% ethylene glycol, 2 vol% deionized water and 0.25 wt% 
NH4HF2. Anodization was performed for 8, 18 and 30h at 
70 V. The nanotube length is maximized at 18h to 6.5 µm 

[91]. Schmuki et al. investigated electrolytes of ethylene glycol 
containing less than 0.2 wt% H2O and HF. They concluded 
that length of nanotubes is maximized at 120 V, 0.2 mol/l HF 
and 15h. Increasing voltage or HF concentration leads to elec-
tro-polishing. In the above mentioned conditions tube length 
of 261 μm with an internal diameter of 70 nm and external 
diameter of 160 nm is obtained [92].

Nanotube Development on Zirconium 
Surface
Zirconium versus titanium
Although pure zirconium is potential for providing proper 
interaction with cells, it has not been explored as much as tita-
nium. Zirconium has enormous potential applications in the 
field of biomedical implants [93]. Biocompatibility and corro-
sion resistance of specific zirconium alloys are proper as well 
as titanium alloys and the mechanical properties of zirconium 
alloys compared to Ti6Al4V alloy have been observed to be 
higher [94]. Titanium alloys that contain zirconium show bet-
ter tensile and fatigue strength than pure titanium [95]. When 
titanium is exposed to body fluids such as saliva, it undergoes 
electrochemical corrosion. Consequently, ions are released 
from the surface of biomaterial. In contrary, zirconium does 
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not show undesirable electrochemical characteristics. Also 
zirconium color is similar to tooth while titanium has a gray 
shine [96]. 

In a comparative animal study, zirconium implants 
demonstrated identical osseointegration as titanium implants. 
In addition, no significant difference was observed between 
healing of the tissues interacting with the materials [96]. 

ZrO2 nanotube formation
Since presence of nanostructure on implant surface is 

shown to enhance desirable cellular response, fabrication of 
ZrO2 nanotubes by anodization is studied, and the influence 
of various electrochemical factors have been evaluated includ-
ing potential of power source and its sweep rate, electrolyte 
composition and anodization time [93]. Pre-anodization of 
zirconium is reported to be beneficent to form highly ordered 
ZrO2 nanotubes. Also ZrO2 nanotube structures that are fab-
ricated on electropolished zirconium show more uniformity 
[93]. When organic electrolytes are employed for anodization, 
the nanostructure formed is thicker, more regular and less 
wavy [97-100].

Microstructure of substrate influences anodic oxidiza-
tions and eventually affects fabrication of ZrO2 nanotubes. 
Following surface mechanical attrition treatment, commer-
cially pure zirconium has nanocrystallized surface layers with 
high density of grain boundaries compared with non-treated 
zirconium. Nanocrystallized zirconium is beneficent to the 
formation of ZrO2 nanotubes and grain boundaries are effec-
tive in accelerating reaction rate. ZrO2 nanotube layer formed 
on the treated zirconium is considerably thicker than that 
formed on the non-treated zirconium. Thickness increases 
also with increase in anodization duration  and follows a para-
bolic function [93]. 

The SEM images show that nanotubes are gradually 
formed on the flat surface similar to formation of TiO2 nano-
tubes. Self-organization is suggested to be product of compe-
tition between growing pores and elsewhere is suggested to be 
result of local surface perturbations. Localized dissolution of 
ZrO2 causes formation of pores and reduction of oxide layer 
thickness. As a result, the electrical field intensity is increased 
at the base of pore and creation of new oxide is induced. In ad-
dition, similar to growth mechanism of nanotube on titanium, 
ZrO2 nanotube formation in electrolytes that contain fluoride 
is the outcome of a competition between oxide formation and 
its chemical dissolution by fluoride ions [93]. 

Different elements that are present in Ti15Nb4Ta4Zr 
(TNTZ) alloy have different electrochemical oxidation rates. 
Therefore reaction rate of TNTZ anodization depends on its 
composition. Different sizes of self-organized nanotubes are 
formed on the surface. Eight tubes with small diameter sur-
round a tube of larger diameter [101]. Anodization of Ti28Z-
r8Nb alloy leads to formation of tubes with 98 nm diameter 
that surround a larger tube of 175 nm diameter [102]. Nano-
tubes that formed on TiZr alloy exhibit uniform arrays; how-
ever, as the zirconium content was increased the diameter of 
the tubes decreased and the length increased [103].

ZrO2 nanotube formation
For the osteoblasts cells cultured on ZrO2 nanotubes 

the initial adhesion, spreading, growth, functionality in terms 
of alkaline phosphatase activity and the formation of extracel-
lular matrix is reported to considerably improve as compared 
with smooth zirconium surface. The cells attached on the 
nanotube surface demonstrated a high cytoskeleton organi-
zation, which was lacking on the flat zirconium [94]. Mesen-
chymal stem cells respond identical to ZrO2 nanotubes, TiO2 
nanotubes and AuPd-coated TiO2 nanotubes. Cell response 
is chiefly based on nano-topographical features rather than a 
certain surface chemistry related to TiO2 [94].

Bone Implant Contact (BIC) and Bone 
Mineral Deposition (BMD)

Frandsen et al. compared osseointegration of titanium-
zirconium (TiZr) with pure titanium and Ti6Al4V alloy. Al-
though the formation of new bone inside the implant grooves 
increased over time regardless of the implant material; how-
ever, the amount of Bone to Implant Contact (BIC) was shown 
to be a function of the implant material. For TiZr and pure ti-
tanium implants, the BIC increased gradually but for Ti6Al4V 
implants the BIC peaked after 2 weeks followed by a decline 
after 8 weeks. On surface of Ti6Al4V implants, considerably 
more coverage by multinucleated giant cells was observed. 
Briefly, TiZr and pure titanium implants showed earlier osse-
ointegration compared with Ti6Al4V implants. Maturation of 
bone marrow next to Ti6Al4V implants was observed to be 
less advanced compared to TiZr and pure titanium implants 
[94]. Lack of considerable difference between BIC of titanium 
and zirconium were also detected in another in vivo study 
while BIC was affected by roughness. A considerably higher 
BIC was observed for zirconium implants with regular rough-
ness compared with low and high roughness implants [96]. In 
addition, bone mineral density (BMD) around TNTZ alloy is 
observed to be similar to Ti6Al4V [104].

Bone Implant Contact (BIC) and Bone 
Mineral Deposition (BMD)

Cellular response can further be improved by applica-
tion of drug. Local drug delivery is developed in order to over-
come systemic side effects and its delivery deficiencies. Many 
drugs are not effectively delivered via systemic routes. For 
example when antibiotics such as Neomycin and Gentamicin 
[105] are taken orally, they are absorbed from the small in-
testine and inactivated. Bone Morphogenic Protein 2 (BMP-
2), as an osteogenic factor, is often delivered intravenously or 
topically. However, avascular tissue formed after surgery in-
hibits delivery of drug to implant–tissue interface. Increasing 
systemic doses to overcome this disadvantage leads to organ 
toxicity [87]. 

Drug loading on TNTs is not well-explored yet although 
drug loading on carbon nanotubes is reported in several stud-
ies to be promising for cancer therapy. Carbon nanotubes need 
to be prefunctionalized through oxidation and pegylation to 

https://www.jscholaronline.org/
https://www.ncbi.nlm.nih.gov/pubmed/22864060


10         

  JScholar Publishers                  
 
                                    J Nanotech Smart Mater 2013 | Vol 1: 301

become water soluble and biocompatible. Then further func-
tionalization also is needed to attach the drug onto carbon 
nanotubes and target them toward cancer tissue. After being 
taken up by the cell, carbon nanotubes release their cargo and 
later they are eliminated from the body [106-112]. However, 
application of carbon nanotubes is restricted since they show 
toxicity and inflammation [113, 114].

Not only TNTs are potential to be loaded with drug 
and antibacterial agents, but also they are biocompatible and 
hydrophilic in contrast to carbon nanotubes. Although local 
drug delivery provides targeted release of drug, control of drug 
release over time remains to be a challenge. Preventing sudden 
release of drug after implantation avoids denaturation of drug 
and enhances its efficiency [115]. Formation of nanotubular 
structure on machined surfaces increases the amount of load-
ed BMP-2 and prolongs drug release [116]. TNTs loaded with 
BMP-2 were coated with multi-layers of gelatin and chitosan 
to further retard release [115]. Although controlled release of 

drug from TNT was successfully achieved through this tech-
nique, the polymeric coating that is used in this method pre-
vents cellular interaction with surface nanostructure. When 
titania nanotube arrays are loaded with polymer micelles as 
drug carriers [117], surface nanostructure can induce cellular 
response. Since degradation of the polymer may induce in-
flammation; it is preferable to avoid its application and change 
the nanotube dimension for optimizing drug release. Anodi-
zation of Ti4Zr22Nb2Sn at different potentials, concentration 
of NH4F and anodization time shows that longer nanotubes 
prolong drug release [118]. Release of the antibiotic from 
elongated TNT formed in an electrolyte based on ethylene 
glycol is reported to be longer in comparison to release from 
shorter TNT that are formed in an aqueous solution [91]. The 
surface of titania nanotubes has a small negative charge due 
to presence of terminal hydroxyl groups. Therefore positively 
charged drugs are released slower compared to negatively 
charged agents [87]. Osteoblast response is also improved 
when nanotubes are loaded with antibiotics [119].

Figure 9: Intercalation of drug inside the nanotubes. Reproduced by permission of The Royal Society of Chemistry [41].

Summary
Since titanium and zirconium provide several ben-

efits compared to other biometals, they are widely used as a 
biomaterial for fabrication of bone and orthopedic implants. 
Desirable characteristics of titanium and zirconium alloys in-
clude biocompatibility, corrosion resistance and proper me-
chanical properties. Biocompatibility and corrosion resistance 
of specific zirconium alloys are as well as titanium alloys and 
the mechanical properties of zirconium alloys are higher than 
Ti alloys. Despite all these benefits, metal implants occasion-
ally become loose or infectious after surgery which eventually 
results in implant failure. In order to overcome this problem, 
nanotechnology is used to modify the surface and increase 
osseointegration. Specifically, fabrication of TiO2 nanotubes 

through anodization technique on surface of titanium has 
shown great potential to promote desirable cellular behavior 
such as adhesion, proliferation and differentiation. In addi-
tion, hydroxyapatite mineralization is increased and bacterial 
adhesion is decreased on nanotubular surfaces compared with 
conventional smooth surfaces. Recent studies have success-
fully optimized properties of nanotubular surfaces to further 
increase osseointegration. In summary, it is concluded that 
nanotubes dimensions, heat treatment and drug loading can 
individually dictates cellar fate.
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