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Abstract

Cerebral ischemia is widely studied through the employment of experimental animal models. Incomplete global models such 
as two-vessel occlusion are relevant in the study of disease states which may attenuate cerebral ischemia. Hyperglycemia is  
known to  worsen the consequences of ischemia but has not been exclusively employed. The two-vessel occlusion model, 
which is unsuccessful when employed in the absence of hypotension and/or hypoxia, is thus  ideal  for  modification  to  a  hy-
perglycemic  model.  We therefore  describe  an established technique for inducing hyperglycemic cerebral ischemia through 
modification of the two-vessel occlusion model as well as the procedure subsequently used to confirm cerebral injury. This 
method produces a larger degree of neural injury in males than in females, with estradiol levels negatively correlated to 
neural injury, confirming trends in research where estrogen is shown to be neuroprotective. Overall, this data is consistent 
with findings  obtained  by  other  groups,  showing  the  neuroprotective nature  of  endogenous estradiol in rat models, with 
cyclic female animals sustaining less neural injury than age-matched male and acyclic female counterparts Furthermore, this 
technique proves to be simple, highly repeatable and  cost  effective.  In  conclusion, the  hyperglycemic cerebral ischemia 
model developed as a modification to the two-vessel occlusion model (with exclusion of hypoxia and/or hypotension) proved 
successful for the study of cerebral ischemia.

©2013 The Authors. Published by the JScholar under the terms of the Crea-
tive Commons Attribution License http://creativecommons.org/licenses/
by/3.0/, which permits unrestricted use, provided the original author and 
source are credited.
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Introduction
A multitude of focal and global models for experimental cer-
ebral ischemia are distinguished and employed in research 
facilities worldwide[1-3]. Various mechanisms of stroke in-
duction are available; including focal and global models per-
formed in either a permanent or transient manner[1]. The 
major advantages of incomplete global over focal ischemic 
models are that the length of ischemia is a great deal shorter 
and achievement of repeatability is more successful[4-6].

Incomplete global models, such as two-vessel occlusion 
(transient bilateral common carotid artery occlusion com-
bined with systemic hypotension or hypoxia), are fairly sim-
ple to employ and achieve repeatability. This model is rel-
evant in ischemia caused by disease states such as diabetes 
and atherosclerosis, as well as in traumatic brain injury[7]. 

Two-vessel occlusion without hypotension or hypoxia, how-
ever, is neither sufficient to bring cerebral blood flow down 
below the ischemic threshold, nor to upset the brain’s energy 
state enough to produce quantifiable cell death[4-6]. Rats 
possess a posterior communicating artery and a complete 
circle of Willis[2], therefore posterior circulation will com-
pensate for anterior occlusion up to a certain threshold. For 
this reason either blood flow or oxygenation of blood has to  
be reduced at the same time that the carotid arteries are oc-
cluded in order to produce quantifiable neural injury[4-6]. 
It is clearly understood that hyperglycemia (as in diabetes) 
intensifies the outcome of cerebral ischemia in both focal and 
global cerebral ischemic models[8,9]. Moderate pre-ischemic 
hyperglycemia enhances neuronal and glial injury and has 
been shown to significantly aggravate the blood-brain barrier 
and accentuate edema, thus worsening the consequences of 
transient forebrain ischemia, potentially through increasing 
cerebrovascular permeability by affecting endothelial integ-
rity[8,9].
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In this paper, we present a modified technique for two-vessel 
occlusion, with the inclusion of mild systemic hyperglycemia 
and the exclusion of hypotension and/or hypoxia. This tech-
nique is simple to employ, highly repeatable and ideal for labo-
ratories where funding is limited.

Materials and Methods
Ketamine/Xylazine anesthesia is proven to cause acute hyper-
glycemia in fed but not fasted Sprague-Dawley rats, with glu-
cose levels remaining elevated for approximately three hours 
post-anesthesia[10]. The classical two-vessel occlusion model 
performed in rats is accompanied by either hypoxia or hypo-
tension to attenuate cerebral ischemia, by preventing collateral 
blood supply to the forebrain during the procedure[2,4-6]. To 
assess the effects of systemic  hyperglycemia  in  exclusivity,  
a  modified  two-vessel  occlusion  model  was employed, an-
esthetizing fed-state rats with a Ketamine/Xylazine combina-
tion, without inducing hypoxia or hypotension.

Animal care
Upon acquisition, the age-matched animals (24 males, 24 cy-
clic females and 24 acyclic females (ovariectomised two weeks 
prior)) were allowed to acclimatize for five days prior to the 
commencement of surgical procedures. They were maintained 
in a micro-barrier unit consisting  of  individually  ventilated  
cages,  at  the  laboratory  animal  facility  of  La-Bio Research 
(Tshwane University of Technology, Pretoria, South Africa). 
The physical size of the cages was in accordance with Euro-
pean standards and allowed for the animals to conduct their 
species specific behavior. The  animal room temperature was  
maintained between 19-23°C with a humidity level of 45-75%. 
A 12h day/night cycle is a constant in the animal unit and light 
intensity is kept between 70-100Lux. The animals were pro-
vided with suitable food and water ad libitum. Food, water and 
bedding were autoclaved before use in the cages, as required 
for use in a micro-barrier unit. 

All experimental procedures were carried out in strict accord-
ance with the requirements of the South African National 
Standard (SANS 10386:2008) pertaining to the care and use of 
animals  for  scientific  purposes. Ethical  clearance  was  ob-
tained  from  the  University  of Pretoria’s Animal Use and Care 
Committee as well as the Tshwane University of Technology’s 
Animal Research Ethics Committee.

Induction of transient experimental cerebral is-
chemia
Fed-state animals were anaesthetized intraperitoneally (IP) 
with Ketamine/Xylazine (Ketamine 100mg/kg IP and Xylazine 
10mg/kg IP) and temperature probes inserted rectally. Warm-
ing pads were used to maintain the animals’ body temperature 
at 37°C (± 0.5°C). A tail prick was then performed to meas-
ure blood glucose levels in order to confirm hyperglycemia 
(>150mg/dl), using an Accu-Chek® Performa Nano blood glu-
cose meter (Dischem, Pretoria, South Africa). Upon confirma-
tion of hyperglycemia, induction of experimental cerebral is-
chemia was commenced in spontaneously breathing rats, with 
the aid of an operating microscope.

Figure 1: Clamping of bilateral common carotid arteries. Left and then right 
common carotid arteries were occluded with microsurgical vessel clips within 
a minute of each other and left in  place  for  15  minutes  to  induce  cerebral  
ischemia. The  incision  was  covered  with dampened gauze to prevent tissue 
drying.

Bilateral common carotid arteries were exposed through a 
single midline neck incision and carefully dissected free from 
surrounding fascia and the adjacent vagus nerve. Left and then 
right arteries were occluded with microsurgical Schwarz Ves-
sel Clips with slightly angled jaws (Surgical Tools Inc., Vir-
ginia, USA) within one minute of each other (Figure 1). The 
neck incision was covered with saline buffer-dampened gauze 
to prevent drying of tissues. Transient experimental cerebral 
ischemia was induced for a period of 15min after which the 
vessel clips were removed and reperfusion allowed. Carotid 
arteries were inspected to ensure return of good pulsations be-
fore the neck incision was closed with a resorbable suture. An-
imals were monitored regularly for abnormal post-operative 
behaviour indicative of pain or discomfort. Monitored param-
eters included, but were not limited to, appetite, locomotive  
behaviour  and  respiratory  pattern.  Following assessment 
upon  waking  and subsequently, the administration of post-
operative analgesics was not deemed necessary. Animals were 
allowed to survive for up to 48h with free access to food and 
water. No animals were lost due to complications arising from 
surgical procedures.

Determination of 17β-estradiol levels
Blood was collected from each individual animal by cardiac 
puncture upon termination, for analysis at Ampath Pathology 
Laboratory Support Services (Pretoria, South Africa). At least
200μl of serum was required for 17β-oestradiol analysis by 
chemiluminescence method using  a  Beckman Coulter  Uni-
Cel®  DxI  800  Immunoassay System.  Chemiluminescence 
technology employs the generation of electromagnetic radia-
tion in the form of light by the release of energy from a chemi-
cal reaction. Values obtained were entered into the SAS® (Ver-
sion 9.3) statistical program for further analysis.

Confirmation of cerebral injury
Whole brains were removed from each individual animal upon 
termination, for analysis of neural tissue injury. The simplest 
and most effective method of whole brain removal proved to 
be cutting the skull cap with scissors from each orbit, laterally 
to the rear of the skull and reflecting  it  forward  (Figure  2).  
The  brain  could  then  be  carefully  scooped  out  upon sever-
ance of the medulla oblongata. Upon removal, the cerebellum 
and olfactory bulbs were carefully dissected off and discarded.
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Figure 2: Skull cap removal. The skull cap was cut from each orbit, laterally to 
the rear and reflected forward. Whole brains were removed, cerebellum and 
olfactory bulbs dissected off for analysis of cerebral tissue.

Figure 3: Coronal slices of cerebrum made using a rat brain matrix. To ensure 
evenly sliced sections, several blades were positioned in series in every second 
slot and a single slicing action was employed. Blades were removed individu-
ally and neural sections transferred directly to the staining container.

The cerebrum was then weighed before sectioning into 2mm 
coronal sections (Figure 3) using an adult rat coronal brain 
matrix (Wirsam Scientific and Precision Equipment Pty Ltd., 
Johannesburg, South Africa) submerged in chilled 0.1M 
phosphate buffered saline (PBS). To quantify ischemic dam-
age, sections were stained in a flat-bottomed, sealed container 
with 0.2% 2,3,5-Triphenyltetrazolium chloride (TTC) (Sigma-
Aldrich®, Kempton Park, South Africa) in 0.1M PBS at a pH 
of 7.40 in a laboratory with temperature regulated at 19-23°C. 
The period for staining was optimized at 3.5h to ensure both 
clear demarcation of viable versus ischemic tissue and for pen-

etration of the stain through a 2mm section. During staining, 
the container was gently agitated every 5min to ensure even 
distribution of stain throughout[11].

The TTC solution was then removed from the container and 
the sections washed in two changes    of    0.1M    PBS    with    
duration    of    1min    each.    A    solvent    of    50:50 Etha-
nol/Dimethylsulfoxide  (EtOH/DMSO)[12]   was  added  to  
the  container  at  20ml/g  of Tissue[13] and allowed to extract 
the TTC formazan product from the tissue for 24h in a dark 
cupboard. This period of extraction was determined sufficient 
to dissolve and redistribute the tissue formazan throughout 
the contents of the container in our laboratory. At the conclu-
sion of the 24h extraction, the container was briefly shaken 
and extract drawn out for absorbance measurement of each 
brain[13,14]. Six repeats per brain of 200µl per well in a 96-
well plate (10 times dilutions of extract (20µl) in EtOH/DMSO 
solvent (180µl)) were measured with a BioTek®  Epoch Micro-
plate Spectrophotometer (Analytical and Diagnostic Products, 
Roodepoort, South Africa) set at the optimal wavelength of 
485nm. The percentage of neural injury was then calculated 
entering all repeat readings into the SAS® (Version 9.3) statis-
tical program, to determine the neural tissue injury of each 
animal against each relevant control, using the following equa-
tion[13-15]: 

% Tissue Injury = 100x[1-(AbsorbanceInjury / Absorbance Control)

Results
Experimental cerebral ischemia was successfully induced 
utilizing a hyperglycemic two- vessel occlusion model. The 
17β-estradiol level was measured from blood plasma and 
neural tissue injury was measured from the whole brains of 
individual animals at 0h (control) 2h, 24h and 48h post-rep-
erfusion.

Neural tissue injury was higher in males than cy-
clic or acyclic females
Neural Tissue Injury (NTI) was evident in all experimental 
animals when compared to group-matched controls. Statisti-
cal analysis showed variability within the neural tissue injury 
model to be 63% and the p-value obtained for the model was 
<0.0001 with a confidence level of 95%. Subsequent to induc-
tion of cerebral ischemia, neural tissue in males progressively 
deteriorated from 2h to 48h post-reperfusion, yielding the 
highest levels of neural tissue injury amongst the groups. The 
neural tissue of cyclic females presented the highest peak of 
neural injury at 2h post-reperfusion, and regeneration vari-
ables were apparent at 24h, with oestrogen curbing the peak 
in inflammation. Acyclic females on the other hand presented 
with the highest level of neural injury at 24h, due to the inabil-
ity to suppress necrosis and initiate recovery. Overall, across 
all time intervals, cyclic females presented significantly less 
neural tissue injury than males and acyclic females. In their 
groups, it was found that male (NTI = 23.897%) rats displayed 
significantly more neural tissue injury than acyclic females 
(NTI = 13.466%) who also in turn displayed significantly more 
neural tissue injury than cyclic females (NTI = 9.217%) (Fig-
ure 4). Previously, neural tissue injury of this subset of animals 
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Figure  4: Percentage neural  tissue  injury  per  group  for  males  
and  cyclic  and  acyclic females. Absorbance values per experimental 
animal was used to calculate neural tissue injury against absorbance 
values of animals allocated as controls to each group. Standard error 
was calculated to be ± 0.619%. Stars indicate significance, males with 
significantly higher neural tissue injury than both female groups, and 
acyclic females with significantly higher neural tissue injury than the 
cyclic female group.

was correlated to alterations in platelet ultrastructure at spe-
cific time points to establish that neural injury and the fluctua-
tion of inflammation associated with such injury is mirrored 
by changes in platelet morphology[15].

Serum estradiol levels increased after ischemic in-
sult
17β-estradiol is a known neuroprotective agent and deter-
mination of endogenous estradiol levels allows for further 
substantiation of the effectiveness of the technique, as litera-
ture shows consistent data that female animals display less 
neural injury than male counterparts[16-19]. In the analysis 
of 17β-estradiol levels, it was confirmed that cyclic females 
(169.833pmol/l) had significantly higher serum levels of fe-
male reproductive hormone than both  males  (68.667pmol/l) 
and  acyclic  females  (56.333pmol/l). Subsequent to  cerebral 
ischaemia/reperfusion, it was found that circulating estra-
diol was upregulated across all groups at 2h post-reperfusion 
where initial ischemic injury was apparent, though to a lesser 
extent  in  males  and  acyclic  females than  in  cyclic  females. 
The expression of  neural estrogen receptors is known to be 
upregulated subsequent to cerebral ischemia[19-21]. Analysis 
of the correlation between neural tissue injury and estradiol 
levels revealed a significant negative correlation between the 
two, confirming that estrogen is neuroprotective as higher lev-
els thereof gave rise to neural injury of lesser degree.

Discussion
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