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Introduction

Abstract
Objective:  A novel metalloproteinase, Pregnancy Associated Plasma Protein-A (PAPP-A), has been implicated in the devel-
opment of atherosclerosis, and is under consideration as a novel biomarker for acute coronary syndrome and unstable plaque.  
The aim of this study was to determine if PAPP-A overexpression directly contributes to plaque vulnerability. 
Methods: Apolipoprotein E knock-out (ApoE KO) mice, a model of atherosclerotic development, and ApoE KO mice over-
expressing PAPP-A transgene in arterial smooth muscle (ApoE KO/Tg) were fed a high fat diet for 20 or 40 weeks starting at 
seven weeks of age.  At harvest, the brachiocephalic artery (BCA) was fixed, embedded in paraffin, sectioned and stained for 
morphologic analyses.
Results:  After 20 weeks on high fat diet, significantly more ApoE KO/Tg mice had BCA lesions with a necrotic core and fi-
brous cap than did ApoE KO mice.  After 40 weeks on high fat diet all mice had BCA plaques with necrotic cores, but plaque 
progression with healed ruptures (i.e., buried fibrous caps), and plaque inflammation were greater in BCA of ApoE KO/Tg 
mice than in ApoE KO mice. 
Conclusion: Overexpression of PAPP-A in arterial smooth muscle of ApoE KO mice is associated with accelerated plaque 
progression and development of vulnerable and ruptured plaque.

Keywords:  Pregnancy associated plasma protein-A; Brachiocephalic artery; Plaque stability; Vulnerable plaque; Apolipopro-
tein E knock-out mice

Atherosclerosis, one of the major diseases of industrialized 
nations, represents a complex response to chronic vascu-
lar injury that involves several cell types and associated cy-
tokines, growth factors and enzyme systems [1-3]. Among the 
spectrum of events, injurious agents promote the infiltration 
of monocytes from the circulation, and these in turn become 
lipid-laden macrophages (foam cells) forming fatty streaks 
in the intima of the vessel.  Transition from relatively simple 
fatty streaks to more advanced lesions is associated with ac-
cumulation of smooth muscle cells in the luminal space that 
proliferate, take up modified lipoproteins and synthesize ex-
tracellular matrix.  Complex lesions are characterized by a 
necrotic lipid-rich core covered by a fibrous cap of smooth 
muscle cells or fibroblasts.

In humans, lipid-laden plaques with thin or uneven fibrous 
cap are the most prone to rupture (‘vulnerable’ plaque), espe-
cially at the shoulder region of eccentric plaques [4, 5].  Un-
fortunately, identification of culprit and vulnerable plaques 
usually comes after the fact, (i.e., at autopsy or coronary 
atherectomy), since imaging systems generally evaluate lumi-
nal narrowing but not plaque composition.  Thus, the quest 
for treatment options to prevent plaque progression would 
benefit from better understanding of the pathobiology of ath-
erosclerosis and the use of  animal models that produce vul-
nerable plaques “at risk” for rupture [6].

Pregnancy associated plasma protein-A (PAPP-A), 
a newly recognized metalloproteinase in the Insulin-like 
Growth Factor (IGF) system, has been implicated in vascular 
repair processes in vitro and in vivo [7], and as a circulating 
biomarker for acute coronary syndrome in humans [8,9]. Fur-
thermore, there is strong PAPP-A immunostaining in human 
autopsy samples of vulnerable atherosclerotic plaque that is 
associated with activated macrophages and smooth muscle 
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cells, especially in the structurally-weakened shoulder region 
of an eccentric culprit plaque [8].

To determine if PAPP-A contributes directly to athero-
sclerotic plaque development, we crossed PAPP-A knock-out 
(KO) mice with apolipoprotein E (ApoE) KO mice, the latter 
being an established murine model of atherosclerosis [10].  
Compared to ApoE KO mice, the ApoE/PAPP-A double KO 
mice had significantly reduced aortic plaque burden and de-
layed progression from fatty streaks to complex lesions [11].  
Conversely, ApoE KO mice overexpressing PAPP-A in arterial 
smooth muscle had significantly increased aortic lesion area 
[12].  However, the effect of PAPP-A overexpression on plaque 
vulnerability has not been evaluated.  Thus, this study was de-
signed to test the hypothesis that targeted overexpression of 
PAPP-A in arterial smooth muscle of ApoE KO mice acceler-
ates the development of atherosclerotic lesions with morpho-
metric characteristics of vulnerable plaque and plaque rupture.

Materials and Methods
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Transgenic PAPP-A  overexpression and atherosclerosis.  
PAPP-A Tg mice (FVB genetic background) were crossed with 
ApoE KO mice (C57BL/6 and 129 genetic background), as 
previously described [12].  It is of note that transgene expres-
sion is driven by the minimal SM22α promoter that had been 
modified by deletion of the repressor elements, which are trig-
gered by vessel injury [13].  The highest PAPP-A transgene ex-
presser, Tg6’ [12], was used for this study.  Offspring from this 
mating, heterozygous for the ApoE gene and positive for high 
level PAPP-A transgene expression, were then intercrossed to 
produce ApoE KO mice and ApoE KO mice expressing the 
PAPP-A transgene, (ApoE KO/Tg).  These littermates, males 
and females housed separately up to five per cage, were fed a 
high-fat, Western-style diet [21% by weight (42% of calories) 
fat and 0.15% by weight cholesterol (Harland Tekland, South 
Eaton, MA)] for 20 and 40 week starting at 7 weeks of age.  
This protocol was reviewed and approved by the Institutional 
Animal Care and Use Committee of Mayo Clinic.  

Morphology
At harvest, the Brachiocephalic Artery (BCA) was fixed in situ 
by perfusion with Phosphate Buffered Saline (PBS)-formalin 
at physiological pressure.  Individual arteries were removed, 
placed in PBS-buffered formalin, and fixed for 24 hours be-
fore paraffin embedding.  Cross-sections (5.0 μm thick) were 
collected over the length of the BCA.  Each end and middle 
sections were stained with hematoxylin and eosin.  Adjacent 
sections were stained with Verhoeff-Van Gieson (Accustain; 
Sigma-Aldrich, St. Louis, MO).  Microscopic analysis was 
performed by an expert cardiovascular pathologist (WDE) 
[14], blinded to genotype, and according to criteria used in 
anatomic pathology and modified for mice (Table 1).  Fisher’s 
exact test was used for statistical comparisons between ApoE 
KO and ApoE KO/Tg mice.

Immunohistochemistry. De-paraffinized sections of 
BCA were stained for macrophages using F4/80 as primary 
antibody, as described previously [15].

Table 1:  Spreadsheet key for morphological analysis of brachioce-
phalic arteries in atherogenic mice.

Table 2: Body weights of mice
                                                            Grams

Start 20 Weeks 40 Weeks

Males

  ApoE KO 28.7 + 0.79 48.9 + 3.39 52.1 + 4.67

ApoE KO/Tg 26.1 + 0.81 44.3 + 3.29 50.4 + 4.51

Females

ApoE KO 22.1 + 0.55 35.9 + 3.69 41.0 + 5.72

ApoE KwO/Tg 21.0 + 0.45 32.5 + 2.05 43.6 + 5.77

Table 2: Body weights of ApoE KO and ApoE KO/PAPP-A Tg mice at 7 
weeks-of-age and after 20 weeks and 40 weeks of high fat diet.

Results 
Body weights of ApoE KO and ApoE KO/Tg mice are shown 

in Table 2.  There were no differences between the two strains 
of mice prior to or 20 and 40 weeks after high fat diet. Sum-
marized data for the histopathology review of BCA plaque 
morphology are presented in Table 3 for mice 20 weeks on 
high fat diet and in Table 4 for mice 40 weeks on high fat diet.  
There was no evidence of luminal thrombus, surface erosion, 
or plaque hemorrhage in any of the sections, and all plaques 
were eccentric.

After 20 weeks on high fat diet, significantly (P = 0.002) 
more ApoE KO mice that were overexpressing PAPP-A had a 
necrotic core in BCA plaques than did ApoE KO mice negative 
for the transgene (Table 3).  There was no significant difference 
between the two groups of mice in terms of plaque grade and 
internal elastic membrane (IEM) disruption, and there was no 
calcification or inflammation in either group.  Figure 1 presents 

Lumin
Thrombus (0 = no, 1 = yes)
Thrombus (0 = not applicable, 1 = platelet/fibrin, 2 = red cell, 3 = 
both 1 & 2)
Intima
Plaque (0 = absent, 1 = eccentric, 2 = concentric, 3 = both 1 & 2)
Plaque grade (1 = 1-25%, 2 = 26-50%, 3 = 51-75%, 4 >75% of 
luminal obstruction)
Surface erosion/fissure (0 = absent, 1 = present)
Fibrous cap (1 = thick, 2 = thin, 3 = absent)
Foam cells without fibrous cap (0 = absent, 1 = present)
Foam cells within the fibrous cap (0 = absent, 1 = present)
Foam cells beneath cap (0 = absent, 1 = present)
Other plaque cells (0 = absent, 1 = chondrocyte-like)
Necrotic core of plaque (0 = absent, 1 = present)
Calcification (0 = absent, 1 = present)
Plaque inflammation (0 = absent, 1 = chronic, 2 = acute, 3 = both 
1 and 2)
Plaque hemorrhage (0 = absent, 1 = present)
Plaque progression (0 = absent, 1 = present)
Internal Elastic Membrane (IEM)
Fragmentation/disruption (0 = absent, 1 = present)
Media
Thinning under the plaque (0 = absent, 1 = present)
Thickening under the plaque (0 = absent, 1 = present)
Hypertrophy opposite the plaque (0 = absent, 1 = present)
Adventitia
Inflammation (0 = absent, 1 = chronic, 2 = acute, 3 = both 1 and 
2)
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Table 3: Brachiocephalic artery plaque morphology after 20 
weeks on HFD: effect of PAPP-A overexpression.

% of Mice

ApoE KO/Tg (18) ApoE KO (21)

Plaque Grade

1 45% 12%

2 45% 25%

3 -- 52%

4 9% --

Necrotic Core 9% 75%*

IEL Disruption 55% 50%

Chondrocyte-like 
Cells

18% --

Calcification -- --

Plaque Inflammation -- --

Plaque Progression -- 25%

Adventitial Inflam-
mation

-- --

Table 3: Results from (N) mice are expressed as % of mice with the indicated 
morphology. *P = 0.002

Table 4: Brachiocephalic artery plaque morphology after 40 
weeks on HFD: effect of PAPP-A overexpression.

% of Mice

ApoE KO (14) ApoE KO/Tg (14)

Plaque Grade

1 7% --

2 57% 36%

3 14% 64%

4 14% --

Necrotic Core 100% 100%

IEL Disruption 57% 79%

Chondrocyte-like Cells 93% 64%

Calcification 43% 43%

Plaque Inflammation 7% 29%‡

Plaque Progression 29% 64%‡

Adventitial Inflammation 29% 29%

Table 4: Results from (N) mice are expressed as % of mice with the indicated 
morphology. ‡P = 0.07

Discussion
In this study, we present morphological evidence that over-
expression of PAPP-A in arterial smooth muscle of ApoE KO 
mice is associated with accelerated plaque progression and de-
velopment of vulnerable and ruptured plaque (Figure. 4).  

Figure 1: Brachiocephalic artery of ApoE KO/Tg mouse 20 weeks on high fat 
diet. Verhoeff-Van Gieson stain. Example of Grade 2 plaque with necrotic core 
containing cholesterol clefts. Arrow indicates IEM disruption.

Figure 2: Brachiocephalic arteries of ApoE KO mice 40 weeks on high fat 
diet. Arrow indicates (A) chondrocyte-like cells or (B) calcification.

a grade 2 (of 4) plaque (based on 25% increments of luminal 
narrowing in cross-sectional area) having a necrotic core with 
cholesterol clefts.  There are foam cells without a fibrous cap 
as well as within and beneath the fibrous cap.  There is also an 
example of disruption of the IEM with extension of the plaque 
into the media.  Interestingly, chondrocyte-like cells were only 
seen in the BCA plaque of ApoE KO, and plaque progression  
was only seen in the BCA of ApoE KO/Tg mice.  However, 
numbers were small.

After 40 weeks on a high fat diet, the BCA plaques of 
all mice had necrotic cores, and there were no differences be-
tween the ApoE KO and ApoE KO/Tg mice in terms of IEM 
disruption, presence of chondrocyte-like cells (Figure. 2A), or 
calcification (Figure. 2B).  However, plaque progression and 
inflammation were substantially greater in BCA of the ApoE 
KO/Tg mice than in ApoE KO mice (Table 4).  This differ-

ence did not reach statistical significance (P = 0.07) likely due 
to the small group sizes.  Plaque progression indicated healed 
ruptures (i.e., multiple layers of necrotic cores interspersed by 
fibrous tissue).  Examples of these buried plaques and associ-
ated macrophage staining are presented in Figure 3.

After 20 weeks on high fat diet, there was a significant 
increase in the number of ApoE KO/Tg mice bearing BCA 
plaque with a necrotic core.  After 40 weeks on high fat diet, 
these BCA plaques showed numerous buried fibrous caps, 
which are indicative of an unstable plaque phenotype and are 
a surrogate marker of plaque rupture [16-19]. This layered ap-
pearance in mouse BCA plaques is similarly observed in hu-
man coronary arteries, and it has been suggested that healed 
plaque ruptures play a role in plaque progression and sudden 
coronary death in humans [20].

There has been controversy in the literature about 
whether plaque rupture occurs in mice.  Issues arise from 
the definitions of plaque vulnerability and rupture and sud-
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Mouse Model of Vulnerable Plaque

  PAPP-A 

   Necrotic Core 

  Plaque Inflammation 

  Plaque Rupture 
Figure 4: Summary of the effect of PAPP-A overexpression in arterial smooth 
muscle on atherosclerotic plaque morphology in ApoE KO mice. 
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