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Abstract

Breast cancer (BCa) is a common endocrine disorder among postmenopausal women and estradiol (E2) known causative 
agent for metastasis. During previous decade, tiny microRNAs (miRNAs) become a potential mediator of tumor suppressor 
or tumorigenic factor. Numerous miRNA regulates nuclear receptor ERα under the influence of estradiol (E2) such as miR-
101, miR-21 whereas miR145, miR-29a, miR-206, let-7 potentiates ERα proliferating activity. MiR-221/222 have established 
in hormone refractory condition after long exposure of Selective Estrogen Receptor Modulators (SERMs) or Selective Estro-
gen Receptor Down Regulator (SERDs). The target genes and the role of miRNAs in ERα mediated tumor progression is a 
challenging area of research that will open new clinical values as novel biomarkers in diagnosis and therapy.
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Introduction
Breast cancer (BCa) is most leading causes of cancer among 
women in western world that resulting in more than 200,000 
new cases and about 40,000 deaths occurring annually in 
United State of America, but recent obtained clinical data 
show assumed decline in mortality rates during previous 
decades[1]. Estradiol (E2) regulates mammary gland differ-
entiation and development in women during early menarche 
and late menopause. BCa cell arise from luminal epithelial 
cells of mammary gland and approximately, third fourth of 
tumors found expression of estrogen receptor alpha (ERα), 
which are major candidates for hormone refractory treat-
ment. The effect of E2change the miRNA expression pattern 
as it lead to cause histological modification in rat mammary 
tissue architecture and some study expresses clear evidence 
about the miRNA expression profile (38 miR alterations) 
after E2 exposure in a tropical fresh water fish i.e. zebrafish 
male (Daniorerio)[2,3]. 

A several decades ago, discovery of Estrogen Receptor (ER) 

isoforms such as ERα/β implicate possible use of Selective 
Estrogen Receptor Modulators (SERMs) such as Tamoxifen 
(TAM) are well recognized chemotherapeutic agent for the 
treatment of breast cancer, which kill cancer cell by down 
regulation of ERα, but one fourth become hormone refrac-
tory. TAM induces endometrial cancer after long exposure 
and sometime pure antiestrogen fulvestrant recommend as 
estrogen receptor down regulator (SERD) for estrogen sen-
sitive BCa in postmenopausal women[4-7]. TAM treatment 
is a common known therapeutic drug for hormone respon-
sive metastatic cancer but tumor regrowth often seen among 
long term treatment and discontinuation[6,8]. Aromatase 
inhibitor (AI) has also used as alternate of estrogen modula-
tors but it has better efficacy seems as in adjuvant therapy 
with TAM[9]. Strong association of HER2 level with disease 
pathogenesis and prognosis become a important therapeutic 
target in BCa[10]. Clifford A et al 2007 has specified the over 
all improved survival of metastatic breast cancer patient with 
HER2 monoclonal antibody Trastuzumab (Herceptin; Ge-
nentech, South San Francisco, CA) treatment, and the combi-
nation with chemotherapy has been revealed to increase both 
survival and response rate, in comparison to Trastuzumab 
alone[11]. 
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MicroRNA biogenesis and their regulatory role 
during tumor growth
MicroRNAs (miRNAs) are short, non-coding RNAs, which 
regulate their corresponding target genes through post-tran-
scriptional repression[12], located at un-translated region and 
evolutionary conserved RNA molecules that usually prevent 
protein synthesis by two different possible mechanisms such 
as cleavage of target mRNA or translational inhibition. Small 
mature RNA molecule produces over two steps such as forma-
tion of long hairpin pre-miRNA and RNA-induced silencing 
complex (RISC) contains dsRNA binding proteins includ-
ing protein kinase RNA activator (PACT), transactivation 
response RNA binding protein (TRBP) process into mature 
miRNA[13]. Microprocessor complex composed of Drosha 
and DGCR8 protein molecule and exportin-5 transport pre-
miRNA (~70nt) duplex with the help of Ran-ATP from nu-
cleus to cytoplasm. Dicer cleaves intermediate 60-70nt long 
miRNA into precursor 18-25nt duplex for the binding with 
RISC complex. RISC complex form mature single stranded 
miRNA for the inhibitory function over transcript of target 
gene[14,15]. More than 50% miRNA resides in cancer associ-
ated gene, which functions as tumor suppressor/oncogene[16]. 
The regulatory power of miRNA is a unique feature as expres-
sion pattern, stability and potential to adjust nuclear receptor 
(NR) transcript regulation, and indicate their important use 
in clinic as prominent biomarkers[15]. The use of miRNA 
therapy could have beneficial use in breast cancer therapy and 
prevention. Table 1 shows the list of miRNAs that regulate ERα 
and mechanism involve in hormone response, drug resistance 
and proliferation during BCa metastasis.

Breast cancer and estrogen receptor 
The role of estrogen, mediated through ER in breast carcino-
genesis and tumor progression has been well established. BCa 
classes subdivide in; luminal A (ER+, PR+ and HER2+), lu-
minal B (ER+, PR+ and HER2-), Basal (triple negative), and 
HER2 (ER-, PR- and HER2+)[17]. Patients with basal subtypes 
are known to have the worst overall survival, reflected by the 
abundance of triple negative tumors followed by patients with 
cancer subtypes of HER2[18]. ER is categorized as a type I 
nuclear receptor that undergoes nuclear translocation after li-
gand binding, regulate mammary development. Kuiper G et al. 
(1996), reclassified ER into a growth promoting ERα, and anti 
proliferating ERβ[19] that exposed new concept in endocrine 
related oncology area. We have categorized that how miRNA 
regulates transcription factors, oncogene and estrogen metab-
olism during BCa metastasis (Figure 1).

Estrogen receptor alpha 

Estrogen (E2) influence their action mediated by differ-
ent mechanisms such as ligand-independent ERα signaling, 
genomic and non-genomic. Growth factors are involved in 
alteration of cytoplasmic kinase/phosphatase activity as li-
gand-independent ERα signaling[20] whereas genomic and 
non genomic mechanism involve in participation of ER with 
interaction of transcription factor such as c-Fos/c-Jun (AP-
1), which regulate downstream cellular mechanism[21]. E2 

stimulates inactive ER-positive cells to make growth promot-
ing environment by stimulating benign cell to malignant[22]. 
E2binding to ERα recruit various corepressor and coactivator 
in cancer cell proliferation that stimulate to occupy promoter 
of their targeted gene[23]. The p160 coactivator such as SRC-
1/2, AIB1 influence transcription activation after ligand bind-

Figure 1: miRNA regulate estrogen production mediated by aromatase 
enzyme activity, and ERα mediated transcriptional activity, co-regulatory 
proteins and signaling pathways.

miRNA Target Function Ref.

miR-27a ZBTB10 Hormone response 38
miR-18a, -19b, 
-20b

p160 and 
AIBI

E2 response 33

miR-193b AKR1C2 E2 production 44
miR-21, -5a, 
-16, -342

Bcl-2 and 
PTEN

TAM response 39, 40

miR-221/222, 
-206

β-catenin Fulvestrant resistance 50

miR-128a TGFβ-R1 Aromatase inhibitors 
resistance

54

miR-23b, -24-1, 
-27b, -29a

ESR1 Dicer activity 47

miR-375 RASD1 Tumor progression 36
miR-145 TP53 Growth inhibition 42
miR-22,-
191/425 cluster

ERα Tumorigenesis 43, 31

miR-17-9p AIB1 and 
c-Myc

Metastasis 41

miR-125a ERBB2 HER2 expression 59
miR-101 Akt Cell survival 29
miR-17-92 c-Myc Promote transcription 35
miR-206, -34a ERα Proliferation 37, 32
miR-200c ZEB1/2, 

Trk/Bmi1
BRCA-1 55

miR-182 BRCA-1 DNA repair 56
Table 1: Lists of miRNA, whose expression regulates drug resistance, tran-
scriptional factors, and other co-regulatory proteins involve in breast cancer 
metastasis
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ing and receptor dimerization. The genetic alteration in a AIB1 
gene activate ERα expression in absence of ligand and it is ma-
jor factor for hormone refractory environment[24,25]. 

Estrogen receptor beta 

ERβ belongs to the nuclear receptor superfamily, with simi-
lar expression pattern, as of ERα and their balanced cross-
talk requires mammary gland development. Experimental 
evidence suggests ERβ have suppressive role over ERα during 
breast cancer proliferation and morphogenesis. Usually, mam-
mary tissue express two third anti-proliferative receptor ERβ 
whereas low expression have seen in invasive breast tumor tis-
sues[26,27]. Leung YK et al 2006 has shown ERβ isoforms, es-
pecially ERβ1 a statutory partner of ERβ dimer, whereas ERβ-
2/4/5 works as enhancer[28]. Epigenetic modification of ERβ 
influence lower expression pattern in breast tumor carcinoma 
and complete loss has observed in one fourth of invasive car-
cinomas[29].Phyto-estrogens are known natural SERMs that 
bind to ERβ and activate expression, but chemically synthe-
sized SERMs inhibit expression of ERα. ERβ –E2 complex ac-
tivated gene expression pattern are different than ERα-E2 and 
hetero dimerization influence inhibitory action of ERβ over 
ERα has been studied as cell based in vitro experiment[30]. 

Effect of miRNA on estrogen receptor
Estrogen regulates biological events in endocrine carcinogen-
esis mediated by ERα and ERβ nuclear receptor. E2- ERα me-
diated miR-191/425 cluster expression controls high level of 
early growth response-1 (EGR-1), which converse a prolifera-
tive lead to metastatic BCa cells[31].

The set of 54 miRNA regulated by estrogen including miR34 
that targets lemur tyrosine kinase 3 (LMTK3) regulates ERα 
mediated cell proliferation and tumor growth[13,32]. E2 in-
hibit miR-101, miR-21 action on cell proliferation, which has 
proven by using fulvestrant and TAM metabolite (4-OHT) 
mediated PTEN regulation a well known function by regulat-
ing ERα/β ratio[33,34]. The ER-α mRNA has a long 3’-UTR of 
about 4.3kb, which has evolutionarily conserved miRNA tar-
get sites. E2 induce various miRNA belong to let-7 family that 
down regulate ERα activity in cell proliferation and metastasis. 
ERα is a key regulatory nuclear protein in BCa, which regulate 
several growth transcription factor such as c-MYC, and miR-
17-92 regulate these transcription factor on estrogenic stimu-
lation[35].

The high expression of miR-375 and RASD1 is validated tar-
get in ERα responsive breast cancer and opposite expression in 
hormone refractory cancer cell[36]. MiR-206 down regulate 
ERα expression by targeting existing two 3’ UTR sequences, 
which were proved by the use of ER antagonist[37]. Recent 
findings suggest miR-27a regulate transcription factor by in-
hibition of ZBTB10 and their inhibition recruit ERα with their 
transactivation for protein-protein interaction[38]. MiR-15a 
and miR-16 are well established as the target of Bcl-2, which 
sensitize TAM effect mediated by ERα in BCa cell line[39]. Ad-
ditionally, miR345 and elevates ERα expression and promotes 
TAM mediated apoptosis in MCF-7 cell[40]. MiR-17-9p lo-
cated on chromosome 13q31 that target AIB1 gene expression 

and modulate ERα regulatory gene/coregulatory expression 
for example CyclinD1, cdc2, SMART and NCoR[41]. MiR-
145 suppress directly the ERα protein expression by binding 
at 3’UTR at coding sequence[42]. The interaction of miR-22 of 
3’UTR sequence of ERα shows a suppressive role in tumor pro-
gression. The tumor suppressor function of miR-22 was clearly 
found in various cell line, and significantly less expression was 
detected in ERα positive cells comparison of ER negative[43].
The proteomic analysis of functional role of miR-193b by high-
throughput strategy utilizing quantitative iTRAQ was demon-
strated in transfected E2 responsive MCF-7 cell, and results 
found as 39 up regulation and 44 down regulation among 390 
analyzed protein in post transfected cell[44]. MiR-193b tar-
get 5’UTR of AKR1C2 which is important aldo-keto enzyme 
coding gene and it catalyzes local estradiol production[45]. 
Depletion of AIB1 data clearly support role of miR-17-92 in 
regulation of ERα mediated regulation of cell proliferation 
and restoration of AIB1 enhance growth in ER independent 
cells[41]. 

The ERβ function as gate keeper gene has been recognized 
in BCa, and it antagonize role of ERα in estrogen mediated 
genomic mechanism[29,46]; inhibit miR30a biogenesis, pro-
motes  miR-23b, -27b and 24-1 accumulation in cells for re-
verse action of ERα on Drosha microprocessor complex[47]. 
ERβ1 is the important isoform and it has been recognized as 
disappearance or down-regulation in late stage of endocrine 
related cancer compared with normal cells[28]. The restrictive 
role of miR-92 has been recognized in various breast cancer 
cell line and their in vitro manipulation induce ERβ1 disap-
pearance[48], which indicate use of specific agonist could help 
in management of aggressive tumor phenotype mediated by 
nuclear receptor.  

MicroRNA and hormone/chemo resistance
Endocrine therapy is a highly effective form of adjuvant 
therapy for hormone sensitive breast cancer.The up regula-
tions of miR-146a, -27a, -145, -21, -155, -15a, -125b, and 
let-7sincluding miR-221/222 are associated with TAM and 
fulvestrant resistance cell lines[49], and miR-221/222 medi-
ate via disappearance of ERα expression and cell promoting 
gene level. ERα re-expression have suppressive play on miR-
221/222 pairs, which have significant role in hormone therapy 
resistance by regulating various signaling pathways including 
β-catenin and TGF-β[50-52]. Some in vivo experiment dem-
onstrated prolonged exposure of rats to TAM has association 
between alterations in miRNA-target proteins such as Bcl2, 
E2F1[53]. The high expression of miR-128a regulates cell 
growth by targeting TGF-β1 in aromatase resistant (aromatase 
independent-AI) cell line, suggest their role in failure of en-
docrine therapy[54]. Classical chemotherapy is commonly 
used in patient treatments over hormone and targeted therapy, 
which results in epithelial-mesenchymal transition (EMT), 
and promote stemness property of exposed cells. EMT mod-
ulated by miR-200c by targeting Zeb1/ Zeb2 and Trk/Bmi1, 
mediate doxorubicin exposed resistance in breast cancer cell 
lines[55]. Radiotherapy is another practice of cancer treatment 
that applies the ability of ionizing radiation to induce cell in-
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activation and cell death in sporadic BCa, miR-182 promote 
sensitivity of IR radiation by causing adaptation in DNA repair 
mechanism of BRCA-1 gene[56]. 

Medical usefulness of miRNA
Breast tissue clinical specimens were evaluated for the ERα as 
direct target of miR-22 and a potential prognostic biomarker 
in estrogen responsive cancer patients[43].  Among various 
miR expressions, miR-21 frequently found high expression in 
pregnancy associated breast cancer patients that are potential 
target of Bcl-2 and some study showed their over-expression 
results as prognostic biomarker ER response. Loss of ex-
pression of Bcl-2 suggest ER negative status of breast cancer 
stages[57]. LMA technology was applied for the study of func-
tional role of various miRNA in breast cancer progression and 
correlation with stages of cancer. Inverse coalition of miR-18a 
and miR-18b has been setup by IHC staining in both estrogen 
responsive and negative tumor tissue[44]. The comparative 
analysis of let-7a/b/i expression among 13 benign, 16 ductal 
carcinoma in situ (DCIS) and 15 invasive carcinoma found 
suppressive role on ERα[58]. High of miR-92 was seen in 29 
FFPE breast tumor tissue samples and low intensity of ERβ1 in 
IHC specimens in comparison to normal[48]. MiR-17-92 pos-
itively regulate ERα expression by recruitment of c-MYC tran-
scription factor in primary stage of breast tumor and highest 
staining of altered AIB1 in tumor tissue than normal[25,35]. 
Polymorphic variant ofpre-miR125a is correlated with ERBB2 
expression, which may use as genetic markers in the prognosis 
of BCa[59]. MRX-34 (Mirna Therapeutics Inc., Austin USA), a 
liposome-based miR-34 is the first series of miRNA therapeu-
tic agents that regulate p53-mediated cancer cell proliferation 
and growth, entered under phase I clinical trials in metastatic 
cancer with liver involvement.

Conclusion
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