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Abstract
Aims: Delineate the feasibility of simultaneous, dual selective “targeted” chemotherapeutic delivery and determine 

if this molecular strategy can promote higher levels anti-neoplastic cytotoxicity than if only one covalent immunochemo-
therapeutic is selectively “targeted” for delivery at a single membrane associated receptor over-expressed by chemothera-
peutic-resistant mammary adenocarcinoma.

Methodology: Gemcitabine and epirubicin were covalently bond to anti-EGFR and anti-HER2/neu utilizing a rap-
id multi-phase synthetic organic chemistry reaction scheme. Determination that 96% or greater gemcitabine or epirubicin 
content was covalently bond to immunoglobulin fractions following size separation by micro-scale column chromatog-
raphy was established by methanol precipitation analysis. Residual binding-avidity of gemcitabine-(C4-amide)-[anti-EG-
FR] applied in dual-combination with epirubicin-(C3-amide)-[anti-HER2/neu] was determined by cell-ELIZA utilizing 
chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3) populations. Lack of fragmentation or polymerization 
was validated by SDS-PAGE/immunodetection/chemiluminescent autoradiography. Anti-neoplastic cytotoxic potency 
was determined by vitality stain analysis of chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3) monolayers 
known to uniquely over-express EGFR (2 x 105/cell) and HER2/neu (1 x 106/cell) receptor complexes. The covalent immu-
nochemotherapeutics gemcitabine-(C4-amide)-[anti-EGFR] and epirubicin-(C3-amide)-[anti-HER2/neu] were applied 
simultaneously in dual-combination to determine their capacity to collectively evoke elevated levels of anti-neoplastic cy-
totoxicity. Lastly, the tubulin/microtubule inhibitor mebendazole evaluated to determine if it’s potential to complemented 
the anti-neoplastic cytotoxic properties of gemcitabine-(C4-amide)-[anti-EGFR] in dual-combination with epirubicin-
(C3-amide)-[anti-HER2/neu].

Results: Dual-combination of gemcitabine-(C4-amide)-[anti-EGFR] with epirubicin-(C3-amide)-[anti-HER2/neu] 
produced greater levels of anti-neoplastic cytotoxicity than either of the covalent immunochemotherapeutics alone. The 
benzimidazole microtubule/tubulin inhibitor, mebendazole complemented the anti-neoplastic cytotoxicity of gemcit-
abine-(C4-amide)-[anti-EGFR] in dual-combination with epirubicin-(C3-amide)-[anti-HER2/neu].

Conclusions: The dual-combination of gemcitabine-(C4-amide)-[anti-EGFR] with epirubicin-(C3-amide)-[anti-
HER2/neu] produced higher levels of selectively “targeted” anti-neoplastic cytotoxicity against chemotherapeutic-resistant 
mammary adenocarcinoma (SKBr-3) than either covalent immunochemotherapeutic alone. The benzimidazole tubulin/
microtubule inhibitor, mebendazole also possessed anti-neoplastic cytotoxicity against chemotherapeutic-resistant mam-
mary adenocarcinoma (SKBr-3) and complemented the potency and efficacy of gemcitabine-(C4-amide)-[anti-EGFR] in 
dual-combination with epirubicin-(C3-amide)-[anti-HER2/neu].
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Introduction
The anthracycline class chemotherapeutics intercalate be-
tween DNA strands to exert their mechanism-of-action that 
in turn inhibits DNA and RNA synthesis in addition to trig-
gers topoisomerasae II mediated DNA cleavage resulting in 
the promotion of cell death. Binding to cell membranes and 
plasma proteins may also be involved in the cytotoxic proper-
ties of the anthracyclines which is complemented by outright 
injury to neoplastic cells secondary to the generation of highly 
reactive free radicals species. Each of these mechanisms-of-ac-
tion collectively promotes apoptosis. In their clinical usage, the 
anthracycline are among the most potent and clinically effec-
tive class of chemotherapeutics for the treatment of mammary 
carcinoma, ovarian carcinoma, colon carcinoma, and acute 
myeloid leukemia.

Gemcitabine is a deoxycytadine nucleotide analog that intra-
cellularly has a mechanism-of-action that involves it being 
triphosphoralated in a manner that allows it to substitute for 
cytadine during DNA transcription resulting in incorporation 
into DNA strands and inhibit the biochemical activity of DNA 
polymerase. A second mechanism-of-action for gemcitabine 
involves inhibition and inactivation of ribonucleotide reduc-
tase and ultimately the suppression of deoxyribonucleotide 
synthesis in concert with diminished DNA repair and reduced 
DNA transcription. Each of these mechanisms-of-action col-
lectively promotes cellular apoptosis. Features of the pharma-
cokinetic profile for gemcitabine include a brief plasma half-
life because it is rapidly deaminated to an inactive metabolite 
that is rapidly eliminated through renal excretion into the 
urine[1-3].

In clinical oncology, the anthracycline chemotherapeutics 
are commonly administered to treat breast cancer and many 
other neoplastic conditions due to their superior level of po-
tency. Gemcitabine is administered for the treatment certain 
leukemias and potentially lymphoma conditions in addition 
to a spectrum of adenocarcinomas and carcinomas affecting 
the lung (e.g. non-small cell), pancreas, urinary bladder and 
esophagus. Gemcitabine has a brief plasma half-life because 
it is rapidly deaminated to an inactive metabolite that is rap-
idly eliminated through renal excretion into the urine[1-3]. 
Despite their superior clinical effectiveness in modern clini-
cal oncology, the anthracyclines, gemcitabine, and many other 
chemotherapeutic agents often have relatively low margins-
of-safety largely because almost invariably they impose a high 
risk for inducing serious sequelae especially when adminis-
tered as a component of a long-term treatment regimen. The 
most common and dose-limiting side effect of anthracycline 
administration is cardiotoxicity which is more prominent with 
doxorubicin compared to epirubicin which is excreted more 
rapidly than doxorubicin presumably due to a difference in 
the spatial orientation of the hydroxyl (-OH) group at the C4-
carbon of the carbohydrate-like moiety.

Although the anthracyclines and gemcitabine exert high levels 
of anti-neoplastic cytotoxicity, when applied as a monotherapy 
they are still usually incapable of completely resolving most 
types of neoplastic disease such as resistant and aggressive 
forms of breast cancer. Mono-therapy treatment regimens also 

pose a higher risk chemotherapeutic-resistance in neoplastic 
cell populations which is a confounding variable that can either 
be induced de-novo or acquired through selective pressure. 
Transformations of neoplastic cells of this type has many im-
plications in clinical oncology for the management breast can-
cer where 20-30% of all affected cases develop metastatic brain 
lesions that characteristically display moderate-to-high levels 
of resistance to chemotherapeutic intervention[4]. Combina-
tion chemotherapeutic regimens are almost invariably more 
potent and effective in suppressing growth and metastasis, 
delaying the onset of disease relapse, prolonging the onset of 
disease remission, and improving the probability of complete 
neoplastic disease elimination. Despite the advantages of com-
bination regimens, anytime conventional chemotherapeutics 
are administered in-vivo in “free form” they still pose a high 
risk frequency for toxic sequelae that can ultimately limit the 
extent and duration of therapeutic intervention[5-14].

Alternative “newer generation” treatment modalities such 
as monoclonal immunoglobulin that inhibit the function of 
trophic receptor complexes uniquely or highly over-expressed 
by populations of a given neoplastic cell type offer an opportu-
nity for avoiding many of the common side effects associated 
with conventional chemotherapeutics. Monoclonal immuno-
globulin fractions with binding-avidity for trophic membrane 
receptors that are over-expressed by neoplastic cell types in-
cluding HER2/neu (e.g. anti-HER2/neu: trastuzumab, pertu-
zumab),[15-19] EGFR (e.g. anti-EGFR: cetuximab, gefitinib), 
[20-23] both HER2/neu and EGFR (e.g. anti-HER2/neu and 
anti-EGFR: panitumumab),[22-25] and IGFR (e.g. figitumum-
ab, dalotuzumab)[26-29] can all be effective treatment options 
for cancer including forms of neoplasia affecting the breast, 
intestinal tract, lung and prostate. One obvious advantage of 
these preparations is their ability to function as anti-cancer 
treatment modalities that avoid many of the sequelae associat-
ed with conventional chemotherapeutics. Unfortunately, most 
monoclonal immunoglobulin-based therapies that inhibit the 
function of trophic membrane receptors are usually only capa-
ble of exerting cytostatic properties and are almost invariably 
plagued by an inability to evoke cytotoxic activity sufficient 
to independently resolve most aggressive or advanced forms 
of neoplastic disease.[15,16,30-44] Increases in cell-cycle G1-
arrest, cellular transformation to states of apoptosis-resist-
ance,[31] and selection for resistant sub-populations[15,16] in 
part are a reflection of the lack of cytotoxic efficacy of anti-
trophic receptor immunoglobulins that can be further com-
plicated by frequent reversal of tumor growth inhibition[15] 
and relapse trophic receptor over-expression[30] following 
therapeutic withdrawl. However, additive or synergistic levels 
of anti-neoplastic potency can be attained with anti-trophic 
receptor immunoglobulin fractions when they are applied 
in dual-combination with conventional chemotherapeutics.
[45-47] Inhibition of HER2/neu function with anti-HER2/
neu results in enhanced levels of anti-neoplastic cytotoxicity 
when it is applied in concert with cyclophosphamide,[46,48] 
docetaxel,[48] doxorubicin,[46;48] etoposide,[48] methotrex-
ate,[48] paclitaxel,[46,48] or vinblastine.[48] Similar to anti-
HER2/neu,[46,48-52] other trophic receptor site inhibitors 
including anti-EGFR,[53-55] anti-IGFR-1,[56,57] and anti-
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VEGFR[45,58,59] also create additive and synergistic levels of 
anti-neoplastic cytotoxicity when applied in combination with 
conventional chemotherapeutic agents.

Covalent immunochemotherapeutics that possess proper-
ties of selective “targeted” delivery have traditionally been 
synthesized utilizing the anthracyclines[60-85]. where doxo-
rubicin[86-90] has been most commonly been utilized to 
date, and to a lesser extent, daunorubicin[91-93] and epiru-
bicin[66,85,94,95]. Covalent immunochemotherapeutics of 
this type utilize monoclonal immunoglobulin fractions, and 
occasionally receptor ligands, receptor ligand fragments or 
synthetic ligands that recognize and physically bind to spe-
cific antigens or receptor complexes uniquely over-expressed 
on the exterior surface membrane of neoplastic cell popula-
tions[66,85,88,89,96,97]. Gemcitabine chemotherapeutic has 
been covalently bonded to large molecular weight platforms 
much less frequently compared to the anthracyclines and a 
very limited number of published reports have described the 
synthesis and anti-neoplastic cytotoxicity of covalent gemcit-
abine immunochemotherapeutics capable of facilitating selec-
tive “targeted” delivery[97-99]. Despite rather extensive famil-
iarity with biological effect of anti-HER2/neu and anti-EGFR 
on the vitality of cancer cell populations and it’s application in 
clinical oncology, there has correspondingly been surprisingly 
little research devoted to the molecular design, chemical syn-
thesis and potency evaluation of covalent anthracycline and 
especially gemcitabine immunochemotherapeutics[97]. Even 
less knowledge currently exists about the potential for dual co-
valent immunochemotherapeutic combinations to additively 
and synergistically attain enhanced levels of anti-neoplastic 
cytotoxicity[97]. Given this perspective, gemcitabine-(C4-
amide)-[anti-EGFR] and epirubicin-(C3-amide)-[anti-HER2/
neu] were applied simultaneously in a dual-combination to 
detect their potential to evoke additive or synergistic levels of 
anti-neoplastic cytotoxicity against chemotherapeutic-resist-
ant mammary adenocarcinoma (SKBr-3). Complementary in-
vestigations delineated the potential for benzimidazole tubu-
lin/microtubule inhibitors to complement the anti-neoplastic 
cytotoxicity of gemcitabine-(C4-amide)-[anti-EGFR] applied 
in dual-combination with epirubicin-(C3-amide)-[anti-HER2/
neu]. Investigations ultimately demonstrated how gemcit-
abine-(C4-amide)-[anti-EGFR] and epirubicin-(C3-amide)-
[anti-HER2/neu] can selectively “target” the delivery of two 
different chemotherapeutic agents at two different unique or 
over-expressed receptors over-expressed by neoplastic cell 
types. The anti-neoplastic cytotoxicity of gemcitabine-(C4-
amide)-[anti-EGFR] and epirubicin-(C3-amide)-[anti-HER2/
neu] is complemented by the biological activity of benzimida-
zole tubulin/microtubule inhibitors.

Materials and Methods
Covalent gemcitabine and epirubicin immuno-
chemotherapeutic synthesis
Phase-I Synthesis Scheme for UV-Photoactivated Chemother-
apeutic Intermediates- The cytosine-like C4-amine of gemcit-
abine (0.738mg, 2.80 x 10-3mMoles) or the C3 α-monoamine 
on the carbohydrate-type moiety of epirubicin was reacted at a 
2.5:1 molar-ratio with the amine-reactive N-hydroxysuccinim-

ide ester “leaving” complex of succinimidyl 4,4-azipentanoate 
(0.252mg, 1.12 x 10-3mMoles) in the presence of triethylamine 
(TEA: 50mM final concentration) utilizing dimethylsulfoxide 
as an anhydrous organic solvent system (Figure. 1). Formulat-
ed from stock solutions, the reaction mixture containing gem-
citabine and succinimidyl 4,4-azipentanoate, or epirubicin 
and succinimidyl 4,4-azipentanoate was continually stirred 
gently at 250 C over a 4-hour incubation period in the dark 
and protected from exposure to light. The relatively long incu-
bation period of 4 hours was utilized to maximize degradation 
of the ester group associated with any residual succinimidyl 
4,4-azipentanoate that may not of reacted during the first 30 
to 60 minutes with the C4 cytosine-like mono-amine group of 
gemcitabine or the C3 α-monoamine of the epirubicin carbo-
hydrate-type moiety.

General Molecular Structure of Covalent Gemcitabine and Epi-
rubicin Immunochemotherapeutics

Figure 1: Molecular design and chemical composition of covalent gemcit-
abine and epirubicin immunochemotherapeutics. 
Legends: (Panel 1) gemcitabine-(C4-amide)-[anti-EGFR]; and (Panel 2) 
epirubicin-(C3-amide)-[anti-HER2/neu]. Both covalent immunochemo-
therapeutics were synthesized utilizing a 2-stage organic chemistry reac-
tion scheme that initially produces a chemotherapeutic analog that is a 
UV-photoactivated intermediate. Covalent bonds are formed at the mono-
amine groups of gemcitabine or epirubicin and the side chains of amino 
acid residues within the sequence of immunoglobulin fractions.

Phase-II Synthesis Scheme for Covalent Gemcitabine and 
Epirubicin Immunochemotherapeutics Utilizing a UV-Pho-
toactivated Chemotherapeutic Intermediate- Immunoglobu-
lin fractions of anti-HER2/neu or anti-EGFR (1.5mg, 1.0 
x 10-5mMoles) in buffer (PBS: phosphate 0.1, NaCl 0.15M, 
EDTA 10mM, pH 7.3) were combined at a 1:10 molar-ratio 
with either the UV-photoactivated gemcitabine-(C4-amide) 
or epirubicin-(C3-amide) intermediate (Phase-1 end product) 
and were initially allowed to gently mix by constant stirring 
for 5 minutes at 25O C in the dark. The photoactivated group 
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of the gemcitabine-(C4-amide) or epirubicin-(C3-amide) reac-
tive intermediates was covalently bonded to chemical groups 
associated with sides chains of amino acid residues in the se-
quence of anti-EGFR or anti-HER2/neu monoclonal immuno-
globulin fractions during a 15 minute exposure to UV light at 
354 nm (reagent activation range 320-370 nm) in combination 
with constant gentle stirring (Figure. 1). Residual un-reacted 
(“free” non-protein associated) gemcitabine or epirubicin was 
removed from covalent immunochemotherapeutic micro-
scale column chromatography following pre-equilibration of 
exchange media with PBS (phosphate 0.1M, NaCl 0.15M, pH 
7.3).

Molecular analysis and characterization of prop-
erties
General analysis: Quantification of the amount of non-co-
valently bound gemcitabine or epirubicin contained within 
gemcitabine-(C4-amide)-[anti-EGFR] and epirubicin-(C3-
amide)-[anti-HER2/neu] preparations respectively entailed 
initial protein precipitation of the covalent immunochemo-
therapeutics with methanol:acetonitrile (1:9 v/v) and sub-
sequent measurement of gemcitabine (absorbance: 265-
268nm),[98,100,101] or epirubicin (Ex/Em: 485nm/538nm)
[17,66,102] in the resulting supernatant.

Quantification of the amount of covalently bound gemcit-
abine or epirubicin was performed at previously described for 
gemcitabine-(C4-amide)-[anti-EGFR][97-99] and epirubicin-
(C3-amide)-[anti-HER2/neu][66,85,102]. Measurements from 
these analyses were utilized to calculate the gemcitabine and 
epirubicin molar-incorporation-indexes for gemcitabine-(C4-
amide)-[anti-EGFR] and epirubicin-(C3-amide)-[anti-HER2/
neu].

Determination of the immunoglobulin concentration for the 
covalent gemcitabine-(C4-amide)-[anti-EGFR] and epiru-
bicin-(C3-amide)-[anti-HER2/neu] immunochemotherapeu-
tics was determined by measuring absorbance at 280nm in 
combinations with utilizing a 235nm -vs- 280nm standardized 
reference curve in order to accommodate for any potential ab-
sorption profile over-lap at 280nm between immunoglobulin 
and the chemotherapeutic moieties of gemcitabine and epiru-
bicin.
Mass/size-dependent separation of gemcitabine-immuno-
chemotherapeutics by non-reducing SDS-PAGE: Covalent 
gemcitabine-(C4-amide)-[anti-EGFR] and epirubicin-(C3-
amide)-[anti-HER2/neu] immunochemotherapeutics in ad-
dition to reference control anti-EGFR and anti-HER2/neu 
immunoglobulin fractions were adjusted to a standardized 
protein concentration of 60µg/ml and then combined 50/50 
v/v with conventional SDS-PAGE sample preparation buffer 
(Tris/glycerol/bromphenyl blue/SDS) formulated without 2-
mercaptoethanol or boiling. Each covalent immunochemo-
therapeutic, the reference control immunoglobulin fraction 
(0.9µg/well) and a mixture of pre-stained reference control 
molecular weight markers were then developed by non-reduc-
ing SDS-PAGE (11% acrylamide) performed at 100 V constant 
voltage at 30C for 2.5 hours.

Western-blot immunodetection analyses: Covalent gemcit-

abine-(C4-amide)-[anti-EGFR] and epirubicin-(C3-amide)-
[anti-HER2/neu] immunochemotherapeutics following mass/
size-dependent separation by non-reducing SDS-PAGE were 
equilibrated in tank buffer devoid of methanol. Mass/size-
separated gemcitabine-(C4-amide)-[anti-EGFR] and epiru-
bicin-(C3-amide)-[anti-HER2/neu] contained in acrylamide 
SDS-PAGE gels were then transferred laterally onto sheets 
of nitrocellulose membrane at 20 volts (constant voltage) for 
16 hours at 20 to 30C with the transfer manifold packed in 
crushed ice.

Nitrocellulose membranes with laterally-transferred immuno-
chemotherapeutics were then equilibrated in Tris buffered sa-
line (TBS: Tris HCl 0.1M, NaCl 150mM, pH 7.5, 40ml) at 40C 
for 15 minutes followed by incubation in TBS blocking buffer 
solution (Tris 0.1M, pH 7.4, 40ml) containing bovine serum 
albumin (5%) for 16 hours at 2for 16 hours at 20 to 30C ap-
plied in combination with gentle horizontal agitation. Prior to 
further processing, nitrocellulose membranes were vigorously 
rinsed in Tris buffered saline (Tris 0.1M, pH 7.4, 40ml, n = 3x).

Nitrocellulose membranes following BSA-block and serial 
rinsing were then incubated with biotinylated goat anti-mu-
rine IgG (1:10,000 dilution) at 40C for 18 hours applied in 
combination with gentle horizontal agitation. Nitrocellulose 
membranes were then vigorously rinsed in TBS (pH 7.4, 40 C, 
50ml, n = 3) followed by incubation in blocking buffer (Tris 
0.1M, pH 7.4, with BSA 5%, 40ml). Blocking buffer was de-
canted from nitrocellulose membrane blots which were then 
rinsed in TBS (pH 7.4, 40 C, 50ml, n = 3) before incubation 
with strepavidin-HRPO (1:100,000 dilution) at 40C for 2 hours 
applied in combination with gentle horizontal agitation. Prior 
to chemiluminescent development nitrocellulose membranes 
were vigorously rinsed in Tris buffered saline (Tris 0.1M, pH 
7.4, 40ml, n = 3). Following development with conjugated HR-
PO-strepavidin each nitrocellulose membrane was then incu-
bated with HRPO chemiluminescent substrate (250C; 5-to-10 
minutes). Chemiluminescent autoradiography images were 
acquired by exposing radiographic film (Kodak BioMax XAR) 
to nitrocellulose membranes sealed within transparent ultra-
clear re-sealable plastic bags.

Mammary adenocarcinoma: Neoplastic disease 
ex-vivo model
Mammary adenocarcinoma tissue culture cell culture: The 
human mammary adenocarcinoma (SKBr-3) was utilized as an 
ex-vivo model for neoplastic disease. Populations of the mam-
mary adenocarcinoma (SKBr-3) were propagated at >85% 
level of confluency in 150-cc2 tissue culture flasks containing 
McCoy's 5a Modified Medium supplemented with fetal bovine 
serum (10% v/v) and penicillin-streptomycin at a temperature 
of 37O C under a gas atmosphere of air (95%) and carbon di-
oxide (5% CO2). Trypsin or any other biochemically active en-
zyme fraction were not used to facilitate harvest of mammary 
adenocarcinoma SKBr-3 cell suspensions for seeding of tissue 
culture flasks or multi-well tissue culture plates. Growth media 
was not supplemented with growth factors, growth hormones 
or any other type of growth stimulant. Characteristic features 
and biological properties of the mammary adenocarcinoma 
(SKBr-3) cell line includes chemotherapeutic-resistance, over-
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expression of epidermal growth factor receptor 1 (EGFR, 
ErbB-1, HER1: at 2.2 x 105/cell), and high over-expression of 
epidermal growth factor receptor 2 (EGFR2, HER2/neu, ErbB-
2, CD340, p185: at 1 x 106/cell).

Cell-ELISA total membrane-bound immunoglobulin as-
say: Cell suspensions of mammary adenocarcinoma (SKBr-3) 
were seeded into 96-well microtiter plates in aliquots of 2 x 
105 cells/well and allowed to form a confluent adherent mon-
olayer over a period of 48 hours. The growth media content 
of each individual well was removed manually by pipette and 
cellular monolayers were then serially rinsed (n = 3) with PBS 
followed by their stabilization onto the plastic surface of 96-
well plates with paraformaldehyde (4% in PBS, 15 minutes). 
Stabilized cellular monolayers were then incubated with co-
valent gemcitabine-(C4-amide)-[anti-EGFR] and epirubicin-
(C3-amide)-[anti-HER2/neu] immunochemotherapeutics 
formulated at gradient concentrations of 0.1, 0.25, 0.5, 1.0, 
5.0 and 10µg/ml in tissue culture growth media (200µl/well). 
Direct contact incubation between (SKBr-3) cellular monolay-
ers and gemcitabine-(C4-amide)-[anti-EGFR] and epirubicin-
(C3-amide)-[anti-HER2/neu] was performed at 37O C over an 
incubation period of 3-hours using a gas atmosphere of air 
(95%) and carbon dioxide (5% CO2). Following serial rinsing 
with PBS (n = 3), development of stabilized mammary ade-
nocarcinoma (SKBr-3) monolayers entailed incubation with 
β-galactosidase conjugated goat anti-mouse IgG (1:500 dilu-
tion) for 2 hours at 25O C with residual unbound immuno-
globulin removed by serial rinsing with PBS (n = 3). Final cell 
ELISA development required serial rinsing (n = 3) of stabilized 
(SKBr-3) monolayers with PBS followed by incubation with 
nitrophenyl-β-D-galactopyranoside substrate (100µl/well of 
ONPG formulated fresh at 0.9 mg/ml in PBS pH 7.2 contain-
ing MgCl2 10mM, and 2-mercaptoethanol 0.1M). Absorbance 
within each individual well was measured at 410nm (630nm 
reference wavelength) after incubation at 37O C for a period 
of 15 minutes.

Anti-neoplastic cytotoxicity: Individual preparations of 
gemcitabine-(C4-amide)-[anti-EGFR] and epirubicin-(C3-
amide)-[anti-HER2/neu] were formulated in growth media 
at standardized chemotherapeutic-equivalent concentrations 
of 10-10, 10-9, 10-8, 10-7, and 10-6 M (final concentration). Each 
chemotherapeutic-equivalent concentration of covalent im-
munochemotherapeutic was then transferred in triplicate into 
96-well microtiter plates containing mammary adenocarci-
noma (SKBr-3) monolayers and growth media (200µl/well). 
Covalent immunochemotherapeutics where then incubated 
in direct contact with monolayer populations of mammary 
adenocarcinoma (SKBr-3) for a period of 182-hours (37O C 
under a gas atmosphere of air (95%) and carbon dioxide/ CO2 
(5%). Following the initial 96-hour incubation period, mam-
mary adenocarcinoma (SKBr-3) populations were replenished 
with fresh tissue culture media with or without covalent im-
munochemotherapeutics or benzimidazole tubulin/microtu-
bule inhibitors.

Cytotoxic potencies for gemcitabine-(C4-amide)-[anti-EGFR] 
and epirubicin-(C3-amide)-[anti-HER2/neu] were measured 
by removing all contents within the 96-well microtiter plates 
manually by pipette followed by serial rinsing of monolayers 

(n = 3) with PBS and incubation with 3-[4,5-dimethylthiazol-
2-yl]-2,5-diphenyl tetrazolium bromide vitality stain reagent 
formulated in RPMI-1640 growth media devoid of pH indica-
tor or bovine fetal calf serum (MTT: 5mg/ml). During an in-
cubation period of 3-4 hours at 37O C under a gas atmosphere 
of air (95%) and carbon dioxide (5% CO2) the enzyme mito-
chondrial succinate dehydrogenase was allowed to convert the 
MTT vitality stain reagent to navy-blue formazone crystals 
within the cytosol of mammary adenocarcinoma (SKBr-3) 
populations (some reports suggest that NADH/NADPH de-
pendent cellular oxidoreductase enzymes may also be involved 
in the biochemical conversion process). Contents of the 96-
well microtiter plate was then removed, followed by serial 
rinsing with PBS (n = 3). The resulting blue intracellular for-
mazone crystals were dissolved with DMSO (300µl/well) and 
then the spectrophotometric absorbance of the blue-colored 
supernatant measured at 570nm using a computer-integrated 
microtiter plate reader.

Results
Molar-incorporation index: Size-separation of gemcitabine-
(C4-amide)-[anti-EGFR] and epirubicin-(C3-amide)-[anti-
HER2/neu] by micro-scale desalting/buffer exchange column 
chromatography consistently yields covalent immunochemo-
therapeutic preparations that contained <4.0% of residual 
chemotherapeutic that was not covalently bound to immuno-
globulin[66,85,97,98,102]. Small residual amounts of non-co-
valently bound chemotherapeutic remaining within covalent 
immunochemotherapeutic preparations is generally accepted 
to not be available for further removal through any additional 
sequential column chromatography separations.[103] The 
calculated estimate of the molar-incorporation-index for the 
covalent gemcitabine-(C4-amide)-[anti-HER2/neu] immuno-
chemotherapeutic was 2.78 utilizing the organic chemistry 
reaction scheme to form an amide bond at the cytosine-like 
mono-amine of gemcitabine and synthesis of the UV-photoac-
tivated gemcitabine-(C4-amide) intermediate (Figure. 1). The 
molar-incorporation-ration of 2.78-to-1 for gemcitabine-(C4-
amide)-[anti-HER2/neu] was relatively larger than the 1.1-to-
1 gemcitabine molar-incorporation-index attained during the 
synthesis of gemcitabine-(C5-methylcarbamate)-[anti-HER2/
neu][97].

Molecular weight profile analysis: Mass/size separation of co-
valent gemcitabine-(C4-amide)-[anti-EGFR] and epirubicin-
(C3-amide)-[anti-HER2/neu] immunochemotherapeutics by 
SDS-PAGE in combination with immunodetection analysis 
(Western blot) and chemiluminescent autoradiography recog-
nized a single primary condensed band of 150-kDa between 
a molecular weight range of 5.0-kDa to 450-kDa (Figure. 2) 
Patterns of low-molecular-weight fragmentation (proteolytic/
hydrolytic degradation) or large-molecular-weight immuno-
globulin polymerization were not detected (Figure. 2). The 
observed molecular weight of 150-kDa for both gemcitabine-
(C4-amide)-[anti-EGFR] and epirubicin-(C3-amide)-[anti-
HER2/neu] directly corresponds with the known molecular 
weight/mass of reference control anti-HER2/neu monoclonal 
immunoglobulin fractions (Figure. 2). Analogous results have 
been reported for similar covalent immunochemotherapeu-
tics[61,66,85,97,98,102,104].
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Cell-Binding Analysis: Total bound immunoglobulin in the 
form of gemcitabine-(C4-amide)-[anti-EGFR] and epirubicin-
(C3-amide)-[anti-HER2/neu] on the external surface mem-
brane of adherent mammary adenocarcinoma (SKBr-3) popu-
lations was measured by cell-ELISA (Figure. 3). Greater total 
membrane-bound gemcitabine-(C4-amide)-[anti-EGFR] and 
epirubicin-(C3-amide)-[anti-HER2/neu] was detected with 
progressive increases in standardized total immunoglobulin-
equivalent concentrations formulated at 0.010, 0.025, 0.050, 
0.250, and 0.500µg/ml (Figure. 3). Collectively each of these 
sets of cell-ELISA findings serve to validate the retained selec-
tive binding-avidity of gemcitabine-(C4-amide)-[anti-EGFR] 
and epirubicin-(C3-amide)-[anti-HER2/neu] for over-ex-
pressed EGFR (2.2 x 105 per cell) and highly over-expressed 
HER2/neu (1 x 106 per cell) trophic receptor sites on the exte-
rior surface membrane of mammary adenocarcinoma (SKBr-
3) populations (Figure. 3)[97].

SDS/PAGE MolecularWeight Separation and Chemilumines-
cent AutoradiographyAnalysis of Covalent Gemcitabine and 
Epirubicin Immunochemotherapeutics

Figure 2: Characterization of the molecular weight profile for the covalent 
immunochemotherapeutics, epirubicin-(C3-amide)-[anti-HER2/neu] and 
gemcitabine-(C4-amide)-[anti-EGFR] relative to reference control anti-
EGFR and anti-HER2/neu monoclonal immunoglobulin fractions. 
Legends: (Lane-1) murine anti-human EGFR monoclonal immunoglobu-
lin; (Lane-2) gemcitabine-(C4-amide)-[anti-EGFR]; (Lane-3) murine anti-
human HER2/neu monoclonal immunoglobulin; and (Lane-4) epirubicin-
(C3-amide)-[anti-HER2/neu]; Covalent immunochemotherapeutics and 
monoclonal immunoglobulin fractions were size-separated by non-reduc-
ing SDS-PAGE followed by lateral transfer onto sheets of nitrocellulose 
membrane to facilitate detection with biotinylated goat anti-mouse IgG 
immunoglobulin. Subsequent analysis entailed incubation of membranes 
with strepavidin-HRPO in combination with the use of a HRPO chemilu-
minescent substrate and the acquisition of autoradiography images.

Detection of Retained Seletive BindingAvidityof Covalent-
Gemcitabine and Epirubicin Immunochemotherapeutics

Figure 3: Detection of total immunoglobulin in the form of gemcitabine-
(C4-amide)-[anti-EGFR] or epirubicin-(C3-amide)-[anti-HER2/neu] se-
lectively bound to the exterior surface membrane of chemotherapeutic-
resistant mammary adenocarcinoma. 
Legends: (◆) gemcitabine-(C4-amide)-[anti-EGFR]; and (■) epirubicin-
(C3-amide)-[anti-HER2/neu]. Covalent gemcitabine-(C4-amide)-[anti-
EGFR] or epirubicin-(C3-amide)-[anti-HER2/neu] immunochemo-
therapeutics formulated at gradient concentrations were incubated with 
triplicate monolayer populations of chemotherapeutic-resistant mammary 
adenocarcinoma (SKBr-3) over a 4-hour period and total immunoglobu-
lin bound to the exterior surface membrane was then measured by cell-
ELISA.

Anti-neoplastic cytotoxicity: Anti-neoplastic cytotoxicity 
of gemcitabine-(C4-amide)-[anti-EGFR] after 182-hours was 
consistently greater than epirubicin-(C3-amide)-[anti-HER2/
neu] following a 96-hour incubation period against chemo-

therapeutic-resistant mammary adenocarcinoma (SKBr-3) 
at and between chemotherapeutic-equivalent concentrations 
of 10-13 M and 10-7 M (Figure. 4). Based on the difference in 
contact incubation periods applied and the levels of anti-ne-
oplastic potency acquired, it can be assumed that epirubicin-
(C3-amide)-[anti-HER2/neu] is relatively more potent than 
gemcitabine-(C4-amide)-[anti-EGFR] over a direct contact 
incubation period of 96-hours (Figure. 4). Gemcitabine-(C4-
amide)-[anti-EGFR] produced progressively higher levels of 
anti-neoplastic cytotoxicity of 0.0% at 10-14 M (100% residual 
survival) to 41.4% at 10-8 M (58.6% residual survival) followed 
by a relatively more rapid increase from 41.4% to 90.1% at and 
between 10-8 M and 10-6 M (58.6% and 9.86% residual sur-
vival) respectively (Figure. 4). Alternatively, relatively rapid 
increases in anti-neoplastic cytotoxicity from 0.0% to 88.5% 
were detected for epirubicin-(C3-amide)-[anti-R2/neu] at and 
between chemotherapeutic-equivalent concentrations of 10-9 

M and 10-6 M (100% to 11.5% residual survival) respectively 
(Figure. 4). Epirubicin-(C3-amide)-[anti-HER2/neu] following 
a 182-hour incubation period produced essentially identical 
levels of anti-neoplastic cytotoxicity that varied between 7.7% 
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Influence of ContactIncubation Period onAnti-Neoplastic Cy-
totoxicityof Selectively“Targeted” Covalent Gemcitabine and 
Epirubicin Immunochemotherapeutics

Figure 4: Relative anti-neoplastic cytotoxicity for the covalent immuno-
chemotherapeutic dual-combination of gemcitabine-(C4-amide)-[anti-
EGFR] and epirubicin-(C3-amide)-[anti-HER2/neu] compared to gemcit-
abine-(C4-amide)-[anti-EGFR] alone against chemotherapeutic-resistant 
human mammary adenocarcinoma. 
Legends: (■) gemcitabine-(C4-amide)-[anti-EGFR] in dual-combination 
with epirubicin-(C3-amide)-[anti-HER2/neu] at 182-hours; (▲) gem-
citabine-(C4-amide)-[anti-EGFR] at 182-hours; and (◆) epirubicin-(C3-
amide)-[anti-HER2/neu] at 96-hours; (●) epirubicin-(C3-amide)-[anti-
HER2/neu] at 182-hours. Individual covalent immunochemotherapeutics 
or the dual 50/50 combination of gemcitabine-(C4-amide)-[anti-EGFR] 
with epirubicin-(C3-amide)-[anti-HER2/neu] were formulated at gradient 
chemotherapeutic-equivalent concentrations and incubated in direct con-
tact with triplicate monolayer populations of chemotherapeutic-resistant 
mammary adenocarcinoma (SKBr-3) for period of 182-hours. Anti-neo-
plastic cytotoxicity was detected and measured using a MTT cell vitality 
assay and values reported as a percentage of matched negative reference 
controls (100%).

Anti-Neoplastic Cytotoxicityof Dual Combinations of Selectively “Targeted” Gemcitabine and Epirubicin Immunochemotherapeutics

Figure 5: Relative anti-neoplastic cytotoxicity for the dual-combination of covalent gemcitabine and epirubicin immunochemotherapeutics against chemother-
apeutic-resistant human mammary adenocarcinoma. 
Legends: Left-Panel (■) gemcitabine-(C4-amide)-[anti-EGFR], and (◆) gemcitabine-(C4-amide)-[anti-EGFR] with epirubicin-(C3-amide)-[anti-HER2/neu]. 
Right-Panel (■) gemcitabine-(C4-amide)-[anti-EGFR] with epirubicin-(C3-amide)-[anti-HER2/neu]; and (◆) gemcitabine-(C4-amide)-[anti-EGFR] with gemcit-
abine-(C4-amide)-[anti-HER2/neu]. Dual-combinations of covalent immunochemotherapeutics were formulated at gradient 50/50 chemotherapeutic-equivalent 
concentrations. Both individual and dual covalent immunochemotherapeutic combinations were incubated in direct contact with triplicate monolayer popula-
tions of chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3) over a period of 182-hours. Anti-neoplastic cytotoxicity was detected and measured 
using a MTT cell vitality assay relative to matched negative reference controls.

and 9.3% residual survival for chemotherapeutic-equivalent 
concentrations at and between 10-14 M and 10-6 M (Figure. 4).

The anti-neoplastic cytotoxicity profiles for gemcitabine-(C4-
amide)-[anti-EGFR] in dual-combination with epirubicin-
(C3-amide)-[anti-HER2/neu] compared to gemcitabine-(C4-
amide)-[anti-EGFR] alone were somewhat similar. Rapid 
progressive increases in anti-neoplastic cytotoxicity for gem-
citabine-(C4-amide)-[anti-EGFR] in dual-combination with 
epirubicin-(C3-amide)-[anti-HER2/neu] from 0.0% to 91.9% 
were detected at and between the chemotherapeutic-equiv-
alent concentrations of 10-11 M and 10-6 M (100% and 8.1% 
residual survival) respectively (Figures. 4 and 5). Alternatively, 
gemcitabine-(C4-amide)-[anti-EGFR] created progressive and 
substantial increases in anti-neoplastic cytotoxicity from 0.0% 
to 90.1% at and between the chemotherapeutic-equivalent 
concentrations of 10-14 M and 10-6 M (100% to 9.9% residual 
survival) respectively (Figures. 4 and 5). Levels of anti-neo-
plastic cytotoxicity for gemcitabine-(C4-amide)-[anti-EGFR] 
in dual-combination with epirubicin-(C3-amide)-[anti-HER2/
neu] were very similar to gemcitabine-(C4-amide)-[anti-EG-
FR] at and between the chemotherapeutic concentrations of 
10-10 M (79.5% -vs- 70.6% residual survival) and the maximum 
concentration of 10-6 M (8.1% -vs- 9.9% residual survival) re-
spectively (Figures. 4 and 5).

The anti-neoplastic cytotoxicity profiles for gemcitabine-(C4-
amide)-[anti-EGFR] with epirubicin-(C3-amide)-[anti-HER2/
neu] formulated as a chemotherapeutic-standardized 50/50 
dual-combination following a 182-hour incubation period 
appeared distinctly different than those detected for only 
epirubicin-(C3-amide)-[anti-HER2/neu] after a 96-hour incu-
bation period especially at the chemotherapeutic-equivalent 
concentrations of 10-10 M, 10-9 M and 10-8 M (Figure. 4). An-
ti-neoplastic cytotoxicity levels for gemcitabine-(C4-amide)-
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[anti-EGFR] with epirubicin-(C3-amide)-[anti-HER2/neu] at 
182-hours and epirubicin-(C3-amide)-[anti-HER2/neu] after 
a 96-hour at and between the chemotherapeutic-equivalent 
concentrations of 10-14 M and 10-11 M were essentially identical 
based on values of 5.6% and 0.4% (94.4% -vs- 99.6% residual 
survival) respectively (Figure. 4). Gemcitabine-(C4-amide)-
[anti-EGFR] in dual-combination with epirubicin-(C3-amide)-
[anti-HER2/neu] produced greater levels of anti-neoplastic 
cytotoxicity compared to epirubicin-(C3-amide)-[anti-HER2/
neu] alone based on the measured values of 20.5% -vs-0.4% at 
10-10 M (79.5% -vs- 99.6% residual survival); 49.5% -vs- 0.0% 
at 10-9 M (50.5% -vs- 100% residual survival); 51.3% -vs- 9.8% 
at 10-8 M (48.7% -vs- 90.2% residual survival); and 89.1% -vs- 
66.9% at 10-7 (10.9% -vs- 33.1% residual survival) respectively 
(Figure. 4). Both gemcitabine-(C4-amide)-[anti-EGFR] in 
dual-combination with epirubicin-(C3-amide)-[anti-HER2/
neu], and epirubicin-(C3-amide)-[anti-HER2/neu] alone had 
nearly identical maximum values of 88.5% -vs- 91.9% at 10-6 

M (11.5% -vs- 8.1% residual survival) respectively (Figure. 4). 
Epirubicin-(C3-amide)-[anti-HER2/neu] following a 182-hour 
incubation period produced nearly identical levels of anti-ne-
oplastic cytotoxicity that varied between 7.7% and 9.3% resid-
ual survival for chemotherapeutic-equivalent concentrations 
at and between 10-14 M and 10-6 M (Figure. 4).

In the comparison of two different dual selective “targeted” 
delivery strategies, the combination of gemcitabine-(C4-
amide)-[anti-EGFR] with epirubicin-(C3-amide)-[anti-HER2/
neu] consistently displayed a trend for exerting greater selec-
tively “targeted” anti-neoplastic cytotoxicity against chem-
otherapeutic-resistant mammary adenocarcinoma than did 
gemcitabine-(C4-amide)-[anti-EGFR] with gemcitabine-(C4-
amide)-[anti-HER2/neu] at and between the chemotherapeu-
tic-equivalent concentrations of 10-9 M and 10-6 M (Figure. 
5). Relative anti-neoplastic cytotoxicity for gemcitabine-(C4-
amide)-[anti-EGFR] with epirubicin-(C3-amide)-[anti-HER2/
neu] compared to gemcitabine-(C4-amide)-[anti-EGFR] with 
gemcitabine-(C4-amide)-[anti-HER2/neu] was 49.5% -vs-
24.5% (50.5% -vs- 75.5% residual survival) at 10-9 M; 51.3% 
-vs- 66.7% (48.7% -vs- 67.2% residual survival) at 10-8 M; 
11.6% -vs- 69.9% (10.9% -vs- 30.1% residual survival) at 10-7 

M; and 91.9% -vs- 83.7.5% (8.1% -vs- 16.3% residual survival) 
at 10-6 M respectively (Figure. 5). Essentially identical levels 
of selectively “targeted” anti-neoplastic cytotoxicity was meas-
ured at 10-10 M (79.5% -vs- 75.7% residual survival) for the du-
al-combinations of gemcitabine-(C4-amide)-[anti-EGFR] with 
epirubicin-(C3-amide)-[anti-HER2/neu] and gemcitabine-
(C4-amide)-[anti-EGFR] with gemcitabine-(C4-amide)-[anti-
HER2/neu] respectively (Figure. 5).

The anti-neoplastic cytotoxicity of individual covalent epi-
rubicin and gemcitabine immunochemotherapeutics is de-
tectably different against chemotherapeutic resistant mam-
mary adenocarcinoma (SKBr-3) populations (Figure. 6)
[66,85,97,98,102].	Gemcitabine-(C4-amide)-[anti-EGFR] and 
epirubicin-(C4-amide)-[anti-HER2/neu] each possessed po-
tent levels of anti-neoplastic potency as a function of both 
chemotherapeutic-quivalent concentration and the duration 
of the contact incubation period (Figures. 4, 5 and 6). Com-
parative evaluation reveals that gemcitabine-(C4-amide)-[anti-

Relative Anti-Neoplastic Cytotoxicityof Covalent Gemcitabine-
and Epirubicin Immunochemotherapeutics

Figure 6: Relative anti-neoplastic cytotoxicity for gemcitabine and epiru-
bicin against chemotherapeutic-resistant human mammary adenocarci-
noma as a function of challenge duration. 
Legend: (..●..) gemcitabine-(C4-amide)-[anti-EGFR] following a 182-hour 
incubation period;[98] (--◆--) gemcitabine-(C4-amide)-[anti-HER2/neu] 
following a 96-hour incubation period;[98] (--☐--)* gemcitabine-(C5-
carbonate)-[thiolated anti-HER2/neu] following a 182-hour incubation 
period;[97] (∆) gemcitabine-(C4-amide)-[anti-HER2/neu] following a 96-
hour incubation period;[99] (-.-◆-.-) epirubicin-(C3-amide)-[anti-HER2/
neu] following a 96-hour incubation period;[102] (●) epirubicin-(C3-
amide)-SS-[anti-HER2/neu] following a 96-hour incubation period;[160] 
(∆)* epirubicin-(C13-imino)-[thiolated-anti-HER2/neu] following a 96-
hour incubation period;[85] and (❍)* epirubicin-(C3-amide)-[thiolated-
anti-HER2/neu] following a 96-hour incubation period.[66] Covalent 
gemcitabine or epirubicin immunochemotherapeutics were formulated at 
gradient chemotherapeutic-equivalent concentrations and incubated with 
triplicate monolayer populations of chemotherapeutic-resistant mammary 
adenocarcinoma (SKBr-3). Anti-neoplastic cytotoxicity was detected and 
measured using a MTT cell vitality assay relative to matched negative ref-
erence controls. Note: (*) = incorporation of aeromatic ring structure into 
synthetic bond structure of covalent immunochemotherapeutic; and (-SS-
) designates incorporation of a potentially cleavable disulfide bond into the 
structure of covalent immunochemotherapeutic

EGFR] was relatively more potent than many if not most analo-
gous epirubicin[66;85;102] and especially gemcitabine[97,98] 
covalent immunochemotherapeutics (Figure. 6).

The relative anti-neoplastic cytotoxicity of gemcitabine against 
chemotherapeutic-resistant mammary adenocarcinoma 
(SKBr-3) following an incubation period of 96-hours was 
lower than levels detected following a 182-hour incubation 
period particularly at the chemotherapeutic-equivalent con-
centrations of 10-8 M (92.3% -vs-75.3% residual survival), 10-7 
M (64.8% -vs- 11.7% residual survival) and 10-6 M (52.0% -vs- 
7.5% residual survival) respectively (Figure. 7). Epirubicin af-
ter a 96-hour incubation period was more potent than gemcit-
abine following a 96-hour incubation period which was most 
prominent at the chemotherapeutic-equivalent concentrations 
of 10-8 M (86.6% -vs- 92.3% residual survival), 10-7 M (37.9% 
-vs- 64.8% residual survival) and 10-6 M (18.5% -vs- 52.0% 
residual survival) respectively (Figure. 7). Gemcitabine fol-
lowing a 182-hour incubation period produced higher levels 
of anti-neoplastic cytotoxicity than epirubicin following a 96-
hour incubation period which was most prominent at 10-8 M 
(75.3% -vs- 86.6% residual survival), 10-7 M (11.7% -vs- 37.9% 
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Influence of Contact Incubation Period on Anti-Neoplastic Cy-
totoxic Potency of Gemcitabine and Epirubicin In Populations 
of Chemotherapeutic Resistant Mammary Adenocarcinoma 
(SKBr-3)

Figure 7: Relative anti-neoplastic cytotoxicity for gemcitabine and epiru-
bicin against chemotherapeutic-resistant human mammary adenocarci-
noma as a function of challenge duration. 
Legend: (◆) gemcitabine following a 96-hour incubation period; (■) gem-
citabine following a 182-hour incubation period; and (▲) epirubicin follow-
ing a 96-hour incubation period. Gemcitabine or epirubicin formulated at 
gradient chemotherapeutic-equivalent concentrations were incubated in 
direct contact with triplicate monolayer populations of chemotherapeutic-
resistant mammary adenocarcinoma (SKBr-3). Anti-neoplastic cytotoxic-
ity was detected and measured using a MTT cell vitality assay relative to 
matched negative reference controls.

Collective Anti-Neoplastic Cytotoxicity of Mebendazole In 
Combination with Selectively “Targeted” Gemcitabin and Epi-
rubicin Delivery

Figure 8: Relative anti-neoplastic cytotoxicity of gemcitabine-(C4-amide)-
[anti-EGFR] in dual-combination with epirubicin-(C3-amide)-[anti-HER2/
neu] with and without mebendazole. 
Legends: (◆) gemcitabine-(C4-amide)-[anti-EGFR] with epirubicin-(C3-
amide)-[anti-HER2/neu] following a 182-hour incubation period; (▲) gem-
citabine-(C4-amide)-[anti-EGFR] and epirubicin-(C3-amide)-[anti-HER2/
neu] in combination with mebendazole following a 182-hour incubation 
period; and (■) gemcitabine-(C4-amide)-[anti-EGFR] and epirubicin-(C3-
amide)-[anti-HER2/neu] in combination with mebendazole following a 96-
hour incubation period. Mean numerical results for (■) and (▲) are nearly 
identical so their marker legends are visually superimposed in the figure 
illustration. The covalent immunochemotherapeutic dual-combination 
formulated at gradient 50/50 chemotherapeutic-equivalent concentrations 
(+/- mebendazole 0.15µM fixed concentration) were incubated in direct 
contact with triplicate monolayer populations of chemotherapeutic-resist-
ant mammary adenocarcinoma (SKBr-3) over a period of either 96-hours or 
182-hours. Anti-neoplastic cytotoxicity was detected and measured using a 
MTT cell vitality assay relative to matched negative reference controls.

Relative Anti-Neoplastic Cytotoxic Potency of      Benzimidazole 
Tubulin/Microtubule Inhibitors

Figure 9: Relative anti-neoplastic cytotoxicity of benzimidazoles against 
chemotherapeutic-resistant human mammary adenocarcinoma. 
Legends: (◆) albendazole; (▲) flubendazole; and (■) mebendazole. Ben-
zimidazole tubulin/microtubule inhibitors formulated at gradient molar-
equivalent concentrations were incubated in direct contact with triplicate 
monolayer populations of chemotherapeutic-resistant mammary adeno-
carcinoma (SKBr-3) over a period of 96-hours. Anti-neoplastic cytotoxic-
ity was detected and measured using a MTT cell vitality assay relative to 
matched negative reference controls.

Influence of Contact Incubation Period on Mebendazole Anti-
Neoplastic Cytotoxic Potency

Figure 10: Relative anti-neoplastic cytotoxicity of mebendazole against 
chemotherapeutic-resistant mammary adenocarcinoma as a function of 
challenge duration (incubation period). 
Legends: (■) mebendazole following a 96-hour incubation period; and 
(◆) mebendazole following a 182-hour incubation period. Mebendazole 
formulated at gradient molar-equivalent concentrations was incubated in 
direct contact with triplicate monolayer populations of chemotherapeu-
tic-resistant mammary adenocarcinoma (SKBr-3) over a period of either 
96-hours or 182-hours. Anti-neoplastic cytotoxicity was detected and 
measured using a MTT cell vitality assay relative to matched negative ref-
erence controls.

residual survival) and 10-6 M (7.5% -vs- 18.5% residual sur-
vival) respectively (Figure. 7).

The anti-neoplastic cytotoxicity of gemcitabine-(C4-amide)-
[anti-EGFR] with epirubicin-(C3-amide)-[anti-HER2/neu] 
formulated as a 50/50 dual-combination following a 182-hour 
incubation period was increased when evaluated in com-
bination with mebendazole (0.15µM fixed final concentra-
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tion) following a 96-hour incubation period (Figure. 8). The 
combination of mebendazole with gemcitabine-(C4-amide)-
[anti-EGFR] and epirubicin-(C3-amide)-[anti-HER2/neu] 
was detectably more potent at the chemotherapeutic-equiva-
lent concentrations of 10-10 M (8.7% -vs- 79.5% residual sur-
vival), 10-9 M (8.7% -vs- 50.5% residual survival), and 10-8 

M (7.7% -vs- 48.7% residual survival) respectively (Figure. 
8). Essentially identical levels of anti-neoplastic cytotoxicity 
were detected for of gemcitabine-(C4-amide)-[anti-EGFR] in 
dual-combination with epirubicin-(C3-amide)-[anti-HER2/
neu] with and without mebendazole at the chemotherapeutic-
equivalent concentrations of 10-7 M (8.1% -vs- 10.9% residual 
survival) and 10-6 M (8.6% -vs- 8.1% residual survival) respec-
tively (Figure. 8).

The benzimadazole tubulin/microtubule inhibitors, albenda-
zole, flubendazole and mebendazole exerted substantial anti-
neoplastic cytotoxicity against chemotherapeutic-resistant 
mammary adenocarcinoma (SKBr-3) at final concentrations 
formulated at and between the range of 0.05µM to 2.5μM 
(Figure. 9). Mean anti-neoplastic cytotoxicity profiles for both 
flubendazole and mebendazole revealed progressive and sub-
stantial increases from approximately 0% and 0% (100% and 
100% residual survival) at 0.05µM to 70.2% and 63.1% (29.8% 
and 36.9% residual survival) at the benzimidazole-equivalent 
concentration of 0.4 M respectively (Figure. 9). Mean anti-
neoplastic cytotoxicity profiles for albendazole revealed a 
progressive increase in anti-neoplastic cytotoxicity from 6.2% 
(93.8% residual survival) at a benzimidazole-equivalent con-
centration of 0.4µM, to a near maximum of 65.4% (34.6% 
residual survival) at 2.0mM respectively (Figure. 9). Mean 
maximum cytotoxic anti-neoplastic potencies for albendazole, 
flubendazole and mebendazole were 64.8%, 68.7% and 70.9% 
(35.2%, 31.3.% and 29.1% residual survival) at the highest 
benzimidazole-equivalent concentration of 2.5μM (Figure. 9). 
Challenge of chemotherapeutic-resistant mammary adeno-
carcinoma (SKBr-3) with mebendazole over a longer incuba-
tion period of 182-hours compared to 96-hours resulted in 
substantially greater levels of anti-neoplastic cytotoxicity that 
were most prominent at concentrations of 0.2µM (25.2% -vs- 
69.6% residual survival) and 0.3µM (9.2% -vs- 48.0% residual 
survival) but was also evident for formulations at and between 
0.4µM (7.5% -vs- 36.9% residual survival) and 2.5µM (6.4% 
-vs- 29.1% residual survival) respectively (Figure. 10).

Discussion
Covalent immunochemotherapeutics can be synthesized 
that promote both selective “targeted” chemotherapeutic 
delivery, and through a variety of mechanisms exert greater 
levels of anti-neoplastic cytotoxicity compared to the “free” 
non-covalently bound form of the chemotherapeutic moeity.
[66,85,89,92,96,102,105-107] Covalent anthracycline immu-
nochemotherapeutics have been designed that selectively “tar-
get” chemotherapeutic delivery to, and evoke potent ex-vivo 
anti-neoplastic cytotoxicity against several different cancer cell 
types including mammary adenocarcinoma (anti-HER2/neu, 
anti-EGFR),[66,85] colon adenocarcinoma (anti-CEA);[93] 
multiple myeloma (CD38+, MC/CAR),[88] B-lymphoma,[87] 
melanoma,[89,92,96] gastric carcinoma,[108] colon carci-

noma,[94] pulmonary carcinoma,[104] and other neoplas-
tic cell types (CEA).[91,92] In direct accord with their level 
of in-vitro efficacy, similar covalent anthracycline immuno-
chemotherapeutics reduce in-vivo tumor burden and prolong 
survival against human xenografts of gastric carcinoma,[108] 
breast cancer,[90] CD38 positive MC/CAR multiple myelo-
ma,[88] B-lymphoma,[87] T-cell lymphoma,[109] colon car-
cinoma,[90,105,106,110] ovarian carcinoma,[105] pulmonary 
carcinoma,[90] metastatic melanoma,[89,96] hepatocellular 
carcinoma,[86] and intracerebral small-cell lung carcino-
ma[111-113].

The molecular design, synthetic organic chemistry reaction 
schemes, and anti-neoplastic cytotoxicity of gemcitabine co-
valently bound to large molecular weight delivery platforms 
has been described on a limited scale compared to analogous 
covalent anthracycline immunochemotherapeutics. Still fewer 
published investigations exist describe organic chemistry syn-
thesis reactions for covalently bonding gemcitabine to mono-
clonal immunoglobulin or other fractions of biologically active 
protein/polypeptide[97,98]. Due to the type and relatively low 
number of chemical groups (sites) available within the molec-
ular structure of gemcitabine there are only a limited number 
of heterobifunctional organic chemistry reaction schemes that 
can be been utilized to covalently bond gemcitabine to large 
molecular weight platforms. One potential methodology in-
volves the creation of a covalent bond structure at the cytosine-
like monoamine group of gemcitabine[80,114-117] either as a 
direct link to a ligand or for the purpose of creating a gemcit-
abine reactive intermediate. Similar molecular strategies have 
been employed to synthesize covalent anthracycline immuno-
chemotherapeutics through the creation of a covalent bond at 
the α-monoamine (C3-amino) group of the carbohydrate moi-
ety within the molecular composition of doxorubicin, dau-
norubicin, epirubicin and related anthracycline class chemo-
therapeutics[64,66,68,70-75,77,78,82,98,118]. Generation of a 
covalent bond at the C5-methylhydroxy group of gemcitabine 
represents an alternative molecular strategy for the synthesis 
covalent gemcitabine-ligand conjugates[97,114,117,119-123].

Gemcitabine has been covalent bonded to a number of bio-
logically relevant ligands with binding avidity for trophic 
receptors like HER2/neu and EGFR that are frequently over-
expressed by many carcinomas and adenocarcinomas includ-
ing those affecting the breast. Most prominent in this regard 
are poly-L-glutamic acid (polypeptide configuration);[122] 
cardiolipin;[119,120] 1-dodecylthio-2-decyloxypropyl-3-pho-
phatidic acid;[121,123] lipid-nucleosides;[124] N-(2-hydroxy-
propyl)methacrylamide polymer (HPMA);[80] benzodiaz-
epine receptor ligand;[114,117] 4-(N)-valeroyl, 4-(N)-lauroyl, 
4-(N)-stearoyl,[116] and anti-HER2/neu;[97,98] in addition to 
4-fluoro[18F]-benzaldehyde derivative[115] for application as a 
diagnostic positron emitting radionuclide.

A trend was recognized for the dual-combination of gemcit-
abine-(C4-amide)-[anti-EGFR] with epirubicin-(C3-amide)-
[anti-HER2/neu] to exert slightly greater levels of selectively 
“targeted” anti-neoplastic cytotoxicity against chemotherapeu-
tic-resistant mammary adenocarcinoma (SKBr-3) at the chem-
otherapeutic-equivalent concentrations of 10-9 M, 10-8 M and 
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10-7 M compared to gemcitabine-(C4-amide)-[EGFR] alone 
(Figure. 4). The dual-combination of gemcitabine-(C4-amide)-
[anti-EGFR] with epirubicin-(C3-amide)-[anti-HER2/neu] 
also produced greater levels of selectively “targeted” anti-
neoplastic cytotoxicity compared to the dual-combination of 
gemcitabine-(C4-amide)-[anti-EGFR] with gemcitabine-(C4-
amide)-[anti-HER2/neu] at the chemotherapeutic-equivalent 
concentrations 10-9 M, 10-8 M, 10-7 M and 10-6 M although the 
results at 10-6 M were not significantly different (Figure. 5).

A variety of molecular mechanisms and cellular processes likely 
account for the levels of anti-neoplastic cytotoxicity produced 
by dual-combinations of covalent immunochemotherapeutics. 
Most notable in this regard is the interdependent interactions 
between aspects related to cancer cell biology, and properties 
of the corresponding immunoglobulin component of covalent 
immunochemotherapeutics. Cancer cell biology variables that 
are influential in this regard include; [i] expression density of 
the external membrane-associated trophic receptor “targets” 
relative to normal tissues and organ systems; [ii] extent that a 
site on the external surface of cancer cell membranes chosen 
to facilitate selective “targeted” chemotherapeutic delivery ul-
timately undergoes internalization by mechanisms of recep-
tor-mediated-endocytosis following the physical binding of a 
receptor ligand or specific immunoglobulin; [iii] rate at which 
membrane trophic receptor complexes are re-expressed and 
replenished following (ligand or immunoglobulin induced) 
internalization by mechanisms of receptor-mediated-endocy-
tosis; and the [vi] degree that neoplastic cell vitality and prolif-
eration characteristics are dependent upon over-expression of 
specific membrane trophic receptor complexes.

In the molecular design and organic chemistry synthesis of 
gemcitabine-(C4-amide)-[anti-EGFR], epirubicin-(C3-amide)-
[anti-HER2/neu] and similar covalent immunochemothera-
peutics, their corresponding immunoglobulin component can 
innately exert an array of properties that contribute signifi-
cantly to their capacity to achieve maximum anti-neoplastic 
cytotoxic potency. Covalent immunochemotherapeutics like 
gemcitabine-(C4-amide)-[anti-EGFR][98] and epirubicin-
(C3-amide)-[anti-HER2/neu][102] that possess binding-avid-
ity for EGFR, HER2/neu, IGF-1R, VEGFR or other trophic 
membrane receptors uniquely or highly expressed by a neo-
plastic cell then their immunoglobulin component is capable 
of directly or indirectly suppressing neoplastic cell vitality, 
proliferation rate, metastatic potential, and chemotherapeu-
tic resistance. Inhibiting the function of trophic receptors 
over-expressed by neoplastic cells by the immunoglobulin 
component of covalent immunochemotherapeutics is in part 
achieved through competitive inhibition of endogenous li-
gand binding at membrane receptor sites (e.g. (e.g. EGF ⇉| 
IgG::EGFR). Inhibitory effects of this type are complemented 
by a transient down-regulated expression, or rather a partial 
or complete depletion of trophic membrane receptor expres-
sion secondary to mechanisms of immunoglobulin-induced 
receptor-mediated-endocytosis[125].

In parallel with suppression of trophic membrane receptor 
function the IgG immunoglobulin component of gemcitabine-
(C4-amide)-[anti-EGFR], epirubicin-(C3-amide)-[anti-HER2/

neu], and analogous covalent immunochemotherapeutics 
effectively facilitates selective “targeted” chemotherapeutic 
delivery and continual deposition of the chemotherapeutic 
moiety onto the exterior surface membrane of neoplastic cell 
populations. The decision regarding which site or sites on the 
external surface membrane of neoplastic cells is to be selected 
to facilitate selective “targeted” chemotherapeutic delivery is 
important because it determines several critical attributes. In 
general theory and practice the immunoglobulin component 
of covalent immunochemotherapeutics can promote selec-
tive “targeted” chemotherapeutic delivery only if it possesses 
binding-avidity specifically for an antigenic “site” that is either 
uniquely expressed or relatively over-expressed on the exter-
nal surface membrane of cancer cells compared to normal 
healthy tissues and organ systems. In mammary adenocarci-
noma (SKBr-3) EGFR (2.2 x 105/cell) is over-expressed and 
HER2/neu (1 x 106/cell) is highly over-expressed compared to 
normal/healthy tissues and organ systems. Similar membrane-
associated antigenic “sites” that are over-expressed by neoplas-
tic cell types include CD19 (B-cell lymphoma), CD20 (chronic 
lymphocytic leukemia), CD22 (Non-Hodgkin lymphoma, 
CD30 (Hodgkin lymphoma), CD33 (acute myelogenous leu-
kemia), CD52 (chronic lymphocytic leukemia), CD74 (mul-
tiple myeloma, B-cell lymphoma), carcinoembryonic antigen 
(CEA: LoVo colon carcinoma), cervical carcinoma cell-surface 
antigen (cervical carcinoma), chondroitin sulfate proteogly-
can (metastatic melanoma), epidermal growth factor receptor 
(EGFR: mammary adenocarcinoma/carcinoma, metastatic 
melanoma, oral epidermoid carcinoma).

Due to their relatively massive size (molecular weight), gem-
citabine-(C4-amide)-[anti-EGFR] and epirubicin-(C3-amide)-
[anti-HER2/neu] are essentially incapable of passively diffusing 
across the intact structure of the lipid bilayer membrane in ne-
oplastic cell populations. The immunoglobulin component of 
gemcitabine-(C4-amide)-[anti-EGFR], epirubicin-(C3-amide)-
[anti-HER2/neu] and other covalent immunochemothera-
peutics can facilitate not only the selective “targeted” delivery 
and deposition of chemotherapeutics on the external surface 
membrane of neoplastic cell types, but it can also initiate active 
trans-membrane intracellular transport of chemotherapeutic 
moieties. Trans-membrane intracellular transport of covalent 
immunochemotherapeutics is possible if their immunoglobu-
lin component physically binds to (antigenic) “sites” on the 
exterior surface membrane of neoplastic cells that are known 
to be internalized by mechanisms similar or identical to those 
observed following selective binding of endogenous receptor 
ligands or immunoglobulin fraction (e.g. EGF or anti-EGFR 
→ EGFR). Such qualities are often a characteristic of trophic 
membrane receptor complexes like EGFR, HER2/neu, IGF-
1R, and VEGFR that are each over-expressed by several neo-
plastic cell types including adenocarcinomas and carcinomas 
that affect the breast, ovary, prostate, lung and intestine. Se-
lective binding of endogenous receptor ligands and immuno-
globulin fractions at their corresponding receptor “sites” on 
the external surface membrane of neoplastic cells initiates in-
ternalization by receptor-mediated-endocytosis phenomenon.
[125] Given this perspective, the immunoglobulin component 
of covalent immunochemotherapeutics like gemcitabine-(C4-
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amide)-[anti-EGFR] and epirubicin-(C3-amide)-[anti-HER2/
neu] affords several important outcomes and attributes. First, 
receptor-mediated-endocytosis stimulated by the binding of 
the immunoglobulin component reduces the risk of covalent 
immunochemotherapeutics like gemcitabine-(C4-amide)-
[anti-EGFR] and epirubicin-(C3-amide)-[anti-HER2/neu] 
from simply coating the exterior surface membrane of neo-
plastic cell populations. Such a prerequisite is only necessary 
if the chemotherapeutic moiety exerts a mechanism-of-action 
that is dependent upon entry into the cytosol or nuclear envi-
ronments. Second, internalization of covalent immunochemo-
therapeutics by receptor-mediated-endocytosis at endogenous 
trophic receptor “sites” aids in facilitating progressive and con-
tinual active trans-membrane transport and subsequent intra-
cellular accumulation of the chemotherapeutic moiety.

In concept, a uniquely high “target” expression density on the 
exterior surface membrane is assumed to represent a distinctly 
desirable characteristic for the purpose of facilitating selective 
“targeted” chemotherapeutic delivery because it theoretically 
maximizes the amount of a covalent immunochemothera-
peutic deposited on the external surface membrane of a given 
cancer cell populations. However, from the perspective of im-
munoglobulin fractions with binding-avidity for trophic mem-
brane receptors, there has been some speculation that has pro-
posed that immunotherapeutics like anti-EGFR, anti-HER2/
neu, anti-IGF-1R, and anti-VEGFR may be most effective 
when their corresponding “targets” are expressed by neoplastic 
cell types at intermediate instead of high or ultra-high levels. A 
second assumption has proposed that high “target” membrane 
expression densities also accelerates the rate and extent that 
chemotherapeutic moieties of covalent immunochemothera-
peutics like gemcitabine-(C4-amide)-[anti-EGFR] and epiru-
bicin-(C3-amide)-[anti-HER2/neu] are actively transported 
across intact external membrane structures of neoplastic cell 
types. Given a single trophic membrane receptor type in a sin-
gle neoplastic cell type this assumption is largely considered 
to be relatively accurate. However, EGFR, HER2/neu, IGF-1R, 
VEGFR and other trophic membrane receptor sites in different 
neoplastic cell types are likely internalized by mechanisms of 
receptor-mediated-endocytosis at relatively unequal rates and 
are also subsequently re-expressed and replenished at different 
rates following internalization. Specific data remains rather 
limited about the receptor-mediated-endocytosis of cova-
lent immunochemotherapeutics like epirubicin-[anti-HER2/
neu][66,85,102] epirubicin-[anti-EGFR],[66] gemcitabine-
[anti-HER2/neu],[97,98] or gemcitabine-[anti-EGFR] fol-
lowing their physical binding to the trophic receptors, EGFR 
or HER2/neu over-expressed by mammary adenocarcinoma 
(SKBr-3). However, metastatic multiple myeloma cell types 
are known to internally transport and subsequently metabo-
lize approximately 8 x 106 molecules of anti-CD74 monoclonal 
antibody per day[126]. Acknowledgement of this considera-
tion correlates with the basic concept that selective “targeted” 
chemotherapeutic delivery at a single membrane-associated 
receptor complex and its subsequent internalization by re-
ceptor-mediated-endocytosis can result in increases in intra-
cellular chemotherapeutic concentrations that approach and 
exceed levels 8.5x[106] to >100x[127] fold greater than those 
capable of being attaining by simple passive chemotherapeutic 

diffusion from the extracellular fluid compartment (e.g. fol-
lowing intravenous injection of “free” chemotherapeutic). As-
sumed advantages of promoting higher cytosol chemothera-
peutic concentrations at least in theory is that it accelerates 
the rate at which neoplastic cells are resolved in-situ thereby 
reducing the frequency and time frame during which certain 
forms of chemotherapeutic-resistance can develop. In concert 
with these considerations, it would logically be anticipated 
that total overall dosage requirements would also be reduced.

Several pharmaceutical strategies exist for increasing the to-
tal amount of chemotherapeutic moiety actively transported 
across intact membranes of neoplastic cells and into the in-
tracellular cytosol environment of neoplastic cells in the form 
of a covalent immunochemotherapeutic. Simultaneous selec-
tive “targeted” chemotherapeutic delivery of dual covalent im-
munochemotherapeutic combinations like gemcitabine-(C4-
amide)-[anti-EGFR] or epirubicin-(C3-amide)-[anti-HER2/
neu] that are directed at more than one receptor (antigenic) 
“site” expressed on the exterior surface membrane of neo-
plastic cell populations represents one potential approach to 
achieving this objective (Figures. 4 and 5). Alternatively, the 
expression densities of one or more membrane receptor “sites” 
utilized for the purpose of selectively “targeted” chemothera-
peutic delivery can be enhanced by up-regulating their transla-
tion[128;129]. Complementary cancer cell biology based strat-
egies include accelerating the rate at which trophic receptor 
“sites” are replenishment (re-expression) on the exterior sur-
face membrane following internalization by receptor-medi-
ated-endocytosis during the time period when neoplastic cell 
sub-populations remain viable. Lastly, elevating the amount 
of chemotherapeutic actively transported into the cytosol of 
individual neoplastic cells by mechanisms of receptor-medi-
ated-endocytosis can also be increased by utilizing synthetic 
organic chemistry reactions and conditions that elevate the 
molar-incorporation index of the chemotherapeutic moiety of 
covalent immunochemotherapeutics.

The covalent bonding of chemotherapeutics to delivery plat-
forms provides several somewhat passive but none the less 
important attributes that are directly related to molecular 
weight. Enhanced levels of anti-neoplastic cytotoxicity for 
gemcitabine-(C4-amide)-[anti-EGFR] or epirubicin-(C3-
amide)-[anti-HER2/neu] against chemotherapeutic-resistant 
mammary adenocarcinoma (SKBr-3) and potentially other 
chemotherapeutic-resistant cancer populations can be attrib-
uted to covalent bonding of the chemotherapeutic moieties to a 
delivery platform that has a much larger molecular weight (e.g. 
IgG MW = 150,000 Da -vs- gemcitabine MW = 263.198 Da). 
Covalent bonding of chemotherapeutics to large molecular 
weight platforms of this size imparts physical alterations that 
through mechanisms of steric hinderance inhibit the biologi-
cal function of entities that can utilize the “free” form of chem-
otherapeutics as a substrate. In this manner, the biochemical 
activity of degradative enzymes is suppressed (e.g. gemcitabine 
inactivation by cytosine deaminase) as is the capacity of P-
glycoprotein (MDR-1: multi-drug resistance protein)[121] to 
extracellular chemotherapeutic transport when it functions as 
a non-selective trans-membrane efflux “pump” complex (com-
monly associated with mechanisms of chemotherapeutic-re-
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sistance)[130-135]. Such a phenomenon may in part reflect 
the observation that 24-hours post selective “targeted” deliv-
ery, a relatively large proportion of an anthracycline (>50%) is 
retained intracellularly[106] where it becomes primarily asso-
ciated with membrane structures or it can be found distributed 
throughout the cytosol environment[125,136]. In this context, 
“free” non-conjugated anthracycline following passive diffu-
sion across intact lipid bi-layer membranes is primarily detect-
ed within complexes associated with nuclear DNA less than 30 
minutes after initial exposure[125]	 while anthracycline liber-
ated from covalent anthracycline immunochemotherapeutics 
reportedly distributes to, and accumulates within the nucleus, 
mitochondria and golgi compartments.[103] Acknowledge-
ment that chemotherapeutic moieties of most, if not all cova-
lent immunochemotherapeutics are less affected by P-glyco-
protein associated extracellular transport is important from 
a clinical perspective because a high percentage of aggressive 
and resistant forms of breast cancer over-express EGFR and/or 
HER2/neu[137-139] and this characteristic is frequently asso-
ciated with chemotherapeutic-resistance, elevated cancer cell 
survival characteristics, and increased proliferation rates (e.g. 
relevant to local invasiveness and metastatic dissemination)
[140,141]. Resistant forms of breast cancer that over-expresses 
EGFR and HER2/neu often are less vulnerable to the cytotoxic 
properties of chemotherapeutics due to simultaneous over-
expression of transmembrane P-glycoprotein[142-147].

Similar in concept to the large molecular weight immuno-
globulin fractions decreasing the vulnerability of gemcitabine 
and epirubicin moieties within gemcitabine-(C4-amide)-[anti-
EGFR] or epirubicin-(C3-amide)-[anti-HER2/neu] to the in-
fluence of P-glycorpotein, this same attributes imposes steric 
hinderance phenomenon that suppresses chemotherapeutic 
metabolism. As a consequence, chemotherapeutic moieties 
like gemcitabine that are covalently bound to immunoglobu-
lin are less vulnerable to biochemical degradation by enzyme 
fractions like cytadine deaminase, and deoxycytidylate deami-
nase (following gemcitabine phosphorylation) which both im-
pose rapid deamination reactions. Lastly, the large mass size of 
immunoglobulin fractions is greater than the glomerular fil-
tration molecular weight cut off (MWCO = 50-kDa) which in 
turn effectively decreases the renal clearance (rate and extent) 
of chemotherapeutic moieties associated with covalent immu-
nochemotherapeutics in a manner that substantially prolongs 
their plasma pharmacokinetic profile.

The covalent immunochemotherapeutics, gemcitabine-(C4-
amide)-[anti-HER2/neu],[98] and epirubicin-(C3-amide)-
[anti-HER2/neu][102] both individually or in dual-combi-
nation with one another can potentially evoke additive and 
synergistic planes of anti-neoplastic cytotoxicity.

Level-1: Additive or synergistic levels of selectively “targeted” 
anti-neoplastic cytotoxicity can be attained when two dif-
ferent chemotherapeutic moieties are utilized in the organic 
chemistry synthesis of two different covalent immunochemo-
therapeutics. Dual selective “targeted” delivery of gemcitabine 
and epirubicin at two different trophic membrane receptors 
over-expressed (EGFR) or highly over-expressed (HER2/neu) 
by chemotherapeutic-resistant mammary adenocarcinoma 

(SKBr-3) collectively serve as a prototype strategy for attain-
ing similar properties through the simultaneous application 
of gemcitabine-(C4-amide)-[anti-EGFR] with epirubicin-(C3-
amide)-[anti-HER2/neu] based on the levels of anti-neoplastic 
cytotoxicity detected at and between the chemotherapeutic 
equivalent concentrations of 10-9 M and 10-7 M (Figure. 4). In 
this example, additive and synergistic properties of anti-neo-
plastic cytotoxicity are dependent upon the collective innate 
mechanisms-of-action associated with the dual gemcitabine 
and epirubicin combination of chemotherapeutics; their si-
multaneous or synchronized internalization by mechanisms 
of receptor-mediated-endocytosis; and the unique biologi-
cal characteristics of chemotherapeutic-resistant mammary 
adenocarcinoma (SKBr-3). The anthracyclines in general are 
a highly potent class of chemotherapeutic that have been co-
administered with gemcitabine for the therapeutic manage-
ment of several different forms of advanced neoplastic dis-
ease[148] including breast cancer,[149] renal carcinoma,[150] 
and leiomyosarcoma[151]. Gemcitabine exerts synergistic 
anti-neoplastic cytotoxicity when applied in combination with 
a number of conventional “small molecular weight” chemo-
therapeutics including oxaliplatin,[152] 5-fluorouracil (5-
FU),[153] pemetrexed,[154,155] hydroxyurea,[156,157] bort-
ezomib,[158] and sorafenib[159].

General pharmacology guidelines advocate that different 
chemotherapeutics should be utilized in dual-combinations 
that ideally possess mechanisms-of-action that are comple-
mentary in effect and distinctly different in order to avoid 
competitive inhibition phenomenon. However, chemothera-
peutic moieties covalently bound to large molecular weight 
platforms that facilitate selective “targeted” delivery are usu-
ally associated with a decreased frequency and severity of se-
quelae that are commonly induced by the “free” non-protein 
bound form of the chemotherapeutic agent. Because cova-
lent immunochemotherapeutics impose a lower frequency 
and severity of sequelae it then becomes possible to utilized 
combinations of two or more chemotherapeutic moieties that 
normally could not previously be administered together in a 
“free” non-protein bound form due to dose-limiting sequelae. 
In effect, covalently bonding multiple different chemothera-
peutics to large molecular weight delivery platforms therefore 
functions as a strategy for broadening the therapeutic spec-
trum of different chemotherapeutic combinations (e.g. n = ≥2) 
because of their wider margin-of-safety. Given this perspec-
tive covalently bonding chemotherapeutics to large molecular 
weight delivery platforms provides a potential opportunity to 
also administer total chemotherapeutic dosage levels for the 
resolution of resistant forms of neoplastic disease that could 
not be safely resolved with the same total dosage of the “free” 
non-protein bound form of the chemotherapeutic agent.

Level-2: Simultaneous or staggered inhibition of EGFR (over-
expressed) and HER2/neu (highly over-expressed) function 
on the external surface membrane of mammary adenocarci-
noma (SKBr-3) utilizing multiple covalent immunochemo-
therapeutics represents an approach for attaining additive and 
synergistic levels of anti-neoplastic efficacy. Selectively “target-
ed” inhibition of different membrane trophic receptors with 
multiple covalent immunochemotherapeutics like the dual-
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combination of gemcitabine-(C4-amide)-[anti-EGFR] with 
epirubicin-C3-amide)-[anti-HER2/neu] is important because 
EGFR, HER2/neu, IGFR, and VEGFR are over-expressed by 
many neoplastic cell types where they directly or indirectly 
regulate proliferation rate, metastatic characteristics, and 
chemotherapeutic resistance. Inhibiting the function of more 
than one trophic receptor over-expressed on the exterior sur-
face membrane of neoplastic cell populations is also important 
because a single immunoglobulin fraction like anti-EGFR, 
anti-HER2/neu, anti-IGFR, and anti-VEGFR usually are only 
capable of reducing cancer cell vitality and decreasing rates of 
proliferation but are generally incapable of evoking cytotoxic 
resolution of neoplastic disease[15,16,30-34].

The opportunity to achieve synergistic levels of anti-neoplas-
tic efficacy is at least theoretically greatest when two or more 
trophic receptors utilized to selectively “target” chemothera-
peutic delivery has a distinctly different effect on neoplastic cell 
biology. Alternatively it is assumed that inhibiting the function 
of two different trophic receptors that each have essentially an 
identical influence or effect on cancer cell biology would prob-
ably not produce a synergistic effect but could promote greater 
suppression of neoplastic cell vitality and proliferation than is 
possible with just a single anti-trophic receptor immunoglob-
ulin. Although the in-vivo immune-mediated anti-neoplastic 
properties of anti-trophic receptor immunoglobulins is highly 
relevant, such processes are unfortunately challenging to col-
lectively simulate and difficult accurately detect during the 
relatively brief incubation periods employed for evaluating the 
ex-vivo potency of many if not most covalent immunochemo-
therapeutics[66,85,97-99,102,160].

Level-3: Additive and synergistic levels of anti-neoplastic cy-
totoxicity can be attained when immunoglobulin fractions 
like anti-EGFR, anti-HER2/neu, anti-IGFR, and anti-VGFR 
are selected for the organic chemistry synthesis of covalent 
immunochemotherapeutics possesses because of their in-
nate anti-neoplastic properties. Multiple levels of additive 
and synergistic anti-neoplastic cytotoxicity can ultimately be 
attained when two different covalent immunochemothera-
peutics are applied in dual-combination within one another 
when they are composed of different chemotherapeutic moi-
eties, and are selectively “targeted” for delivery at different 
membrane trophic receptor types. In instances where Simul-
taneous selective “targeted” chemotherapeutic delivery (e.g. 
gemcitabine and epirubicin) in dual-combination with inhi-
bition of trophic-receptor function especially when they are 
over-expressed (e.g. SKBr-3: EGFR) or highly over-expressed 
(e.g. SKBr-3: HER2/neu) represents an opportunity for gen-
erating additive or synergistic levels of anti-neoplastic cyto-
toxicity[45-49,52-55,58,59,161,162]. Additive or synergistic 
interactions of this type have been detected between anti-
HER2/neu when applied in simultaneous combination with 
cyclophosphamide,[46,48] docetaxel,[48] doxorubicin,[46;48] 
etoposide,[48] methotrexate,[48] paclitaxel,[46;48] or vinblas-
tine[48]. Similar to anti-HER2/neu,[46,48-52] other trophic 
receptor site inhibitors including anti-EGFR,[53-55] anti-
IGFR-1,[56,57] and anti-VEGFR[45,58,59] also create addi-
tive and synergistic levels of anti-neoplastic cytotoxicity when 
applied in combination with conventional chemotherapeutic 

agents. In the dual-combination of gemcitabine-(C4-amide)-
[anti-EGFR] with epirubicin-(C3-amide)-[anti-HER2/neu] the 
possible levels of additive or synergistic interactions between 
chemotherapeutic moieties and immunoglobulin fractions 
would include; [i] gemcitabine and anti-EGFR, [ii] gemcit-
abine and anti-HER2/neu; [iii] gemcitabine, anti-EGFR, and 
anti-HER2/neu; [iv] epirubicin and anti-EGFR, [v] epirubicin 
and anti-HER2/neu; [vi] epirubicin, anti-EGFR, and anti-
HER2/neu; [vii] gemcitabine, epirubicin and anti-EGFR; [viii] 
gemcitabine, epirubicin and anti-HER2/neu; and/or [ix] gem-
citabine, epirubicin, anti-EGFR and anti-HER2/neu.

Level-4: Simultaneous in-vivo selective “targeted” delivery of 
chemotherapeutic at trophic receptor sites (highly) over-ex-
pressed on the exterior surface membrane of neoplastic cell 
populations utilizing covalent immunochemotherapeutics 
provides affords attaining additional planes of additive and syn-
ergistic anti-neoplastic cytotoxicity. When dual-combinations 
of covalent immunochemotherapeutics like gemcitabine-(C4-
amide)-[anti-EGFR] and epirubicin-(C3-amide)-[anti-HER2/
neu] are selectively “targeted” in-vivo at EGFR and HER2/neu 
that are highly over-expressed by chemotherapeutic-resistant 
mammary adenocarcinoma (SKBr-3) it results in initiation 
of several innate immune responses that produce a variable 
degree of anti-neoplastic cytotoxicity. Most prominent in this 
regard is an additive or synergistic levels of anti-neoplastic 
cytotoxicity potentially attained through the combined in-
terdependent effects of several immune-dependent processes 
that can include; [i] complement-mediated cytolysis; [ii] op-
sonization subsequent to the formation of IgG/receptor/com-
plement complexes on the exterior surface of neoplastic cell 
membranes (e.g. macrophage mediated phagocytosis); and 
[iii] antibody dependent cell-mediated cytotoxicity (ADCC) 
which is classically mediated through natural killer lympho-
cytes (NK cells) but participation in this response can also 
include macrophages, neutrophils and eosinophils. In ADCC 
responses the immune cells involved in this phenomenon re-
lease cytotoxic components that are known to additively and 
synergistically enhance the cytotoxic anti-neoplastic activity 
of conventional chemotherapeutic agents.[163] Recognition of 
the collective role that different immune-dependent responses 
have in contributing to additive and synergistic levels of an-
ti-neoplastic potency at least in part delineates how covalent 
immunochemotherapeutics frequently evoke greater efficacy 
when implemented in-vivo compared to ex-vivo tissue culture 
based models for neoplastic disease even when the same iden-
tical cancer cell type (xenographs) are utilized[108,164,165].

Due to potential for complement-mediated lysis, ADCC and 
opsonization to all contribute to enhance the levels of anti-
neoplastic cytotoxicity of covalent immunochemotherapeu-
tics like gemcitabine-(C4-amide)-[anti-EGFR] and epirubicin-
(C3-amide)-[anti-HER2/neu], it is technically very difficult to 
simultaneously and accurately simulate these three immune-
dependent responses utilizing ex-vivo models for neoplastic 
disease. In clinical environments immunoglobulin fractions 
when utilized for selective “targeted” delivery of therapeutic 
pharmaceuticals or diagnostic imaging agents in nuclear med-
icine frequently are biochemically modified with enzymes like 
papain in order to cleave (remove) the Fc segment of the IgG 
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molecule. In effect, such biochemical modifications minimize 
non-selective binding at Fc receptors expressed by cells within 
the RE system (mononuclear phagocytic system) physically 
residing within the spleen and liver. Unfortunately, such bio-
chemical modifications create a covalent immunochemother-
apeutic composed of just F(ab’)2 or Fab’ fragment which would 
have less of a capacity to induce activation of the complement 
cascade (e.g. C9 cytolysis, C3b/C4b opsonization), neoplas-
tic cell opsonization (e.g. macrophage Fc receptor dependent 
binding), or ADCC phenomenon (e.g. NK lymphocyte Fc re-
ceptor dependent binding).

Level-5: Dual-combinations of gemcitabine-(C4-amide)-[anti-
EGFR] and epirubicin-(C3-amide)-[anti-HER2/neu] in-vivo 
presents an opportunity to potentially attain still another plane 
of additive and synergistic anti-neoplastic cytotoxicity that in-
volves; [i] gemcitabine, trophic membrane receptor inhibition, 
and innate immune response activation; and/or [ii] epirubicin, 
trophic membrane receptor inhibition, and innate immune 
response activation.In support of this concept, immune cell 
populations that are involved in ADCC phenomenon release 
cytotoxic components that are known to additively and syn-
ergistically enhance the cytotoxic anti-neoplastic activity of 
conventional chemotherapeutic agents[163]. Undoubtedly, 
other immune responses also contribute to the anti-neoplastic 
properties of many conventional chemotherapeutic agents. 
Recognition of the phenomenon where different immune-
dependent responses become a significant component of addi-
tive and synergistic anti-neoplastic cytotoxicity phenomenon 
in active partnership with chemotherapeutics and trophic 
receptor inhibition at least in part delineates how covalent 
immunochemotherapeutics frequently evoke greater effica-
cy when implemented in-vivo compared to their evaluation 
in ex-vivo tissue culture based models for neoplastic disease 
even when the same identical cancer cell type (xenographs) 
are utilized[108,164,165]. Each of the qualities and properties 
discussed for selective “targeted” chemotherapeutic delivery 
and additive or synergistic interactions that can be evoked 
by gemcitabine-(C4-amide)-[anti-EGFR] and epirubicin-(C3-
amide)-[anti-HER2/neu] collectively serve to explain how the 
dual-combination of these two covalent immunochemothera-
peutics produced additive levels of anti-neoplastic cytotoxicity 
against chemotherapeutic-resistant mammary-adenocarcino-
ma (SKBr-3) when utilized as an ex-vivo model for neoplastic 
disease (Figures. 4, 5 and 7). Basis for this conclusion is based 
on the observation that when gemcitabine-(C4-amide)-[anti-
EGFR] and epirubicin-(C3-amide)-[anti-HER2/neu] were 
formulated as a 50:50 chemotherapeutic-equivalent combina-
tion the anti-neoplastic cytotoxicity levels were intermediate 
between levels detected for each of the two individual covalent 
immunochemotherapeutics (Figure. 4).

Each of the qualities and properties of selective “targeted” 
chemotherapeutic delivery and complementary interac-
tions afforded by gemcitabine-(C4-amide)-[anti-EGFR] and 
epirubicin-(C3-amide)-[anti-HER2/neu] collectively serve to 
explain how the dual-combination of these two covalent im-
munochemotherapeutics have the potential to induced levels 
of anti-neoplastic cytotoxicity that were greater than for either 
of the covalent immunochemotherapeutics alone (Figure. 

4). Such a consideration is particularly relevant in scenarios 
where neoplastic cell populations are in direct contact with 
gemcitabine-(C4-amide)-[anti-EGFR] and epirubicin-(C3-
amide)-[anti-HER2/neu] over a prolonged period of time and 
especially following in-vivo administration (e.g. IV injection).

Several variables could be have been modified to increase and 
maximize the anti-neoplastic cytotoxicity of gemcitabine-(C4-
amide)-[anti-EGFR] in dual-combination with epirubicin-
(C3-amide)-[anti-HER2/neu].

i.	 Almost invariably, levels of anti-neoplastic cytotoxicity can 
be increased by prolonging the ex-vivo incubation period 
during which time neoplastic cells are in direct and simulta-
neous contact with each individual covalent immunochem-
otherapeutic.

ii.	A different human neoplastic cell type could have been 
applied to access anti-neoplastic cytotoxicity of gemcit-
abine-(C4-amide)-[anti-EGFR] in dual-combination with 
epirubicin-(C3-amide)-[anti-HER2/neu]. In contrast to 
chemotherapeutic-resistant mammary adenocarcinoma 
(SKBr-3) anti-neoplastic cytotoxicity of gemcitabine-(C4-
amide)-[anti-EGFR] in dual-combination with epiru-
bicin-(C3-amide)-[anti-HER2/neu] would likely have been 
higher if it had been measured utilizing an entirely differ-
ent neoplastic cell type such as pancreatic carcinoma,[166] 
small-cell lung carcinoma,[167] neuroblastoma,[168] or 
leukemia/lymphoid[123;169] populations because of their 
relatively higher gemcitabine sensitivity. Similarly, human 
promyelocytic leukemia,[121;123] T-4 lymphoblastoid 
clones,[123] glioblastoma;[121;123] cervical epitheliod car-
cinoma,[123] colon adenocarcinoma,[123] pancreatic ad-
enocarcinoma,[123] pulmonary adenocarcinoma,[123] oral 
squamous cell carcinoma,[123] and prostatic carcinoma[80] 
have been found to be sensitive to gemcitabine and gemcit-
abine-(oxyether phopholipid) covalent chemotherapeutic 
conjugates. Within this array of neoplastic cell types, how-
ever, human mammary carcinoma (MCF-7/WT-2’)[123] 
and mammary adenocarcinoma (BG-1)[123] are known 
to be relatively more resistant to gemcitabine and gemcit-
abine-(oxyetherphopholipid) chemotherapeutic conjugate. 
Presumably this pattern of diminished gemcitabine sensi-
tivity is directly relevant to the anti-neoplastic cytotoxicity 
detected for gemcitabine-(C4-amide)-[anti-EGFR] in dual-
combination with epirubicin-(C3-amide)-[anti-HER2/neu] 
compared to gemcitabine in chemotherapeutic-resistant 
mammary adenocarcinoma (SKBr-3) populations (Figure. 
4).

iii.	Analogous to the consideration that the utilization of a dif-
ferent neoplastic cell type could have been used that was 
more sensitive to epirubicin, and especially gemcitabine, 
a human cancer cell population could also have alterna-
tively been selected to assess anti-neoplastic cytotoxicity of 
gemcitabine-(C4-amide)-[anti-EGFR] in dual-combination 
with epirubicin-(C3-amide)-[anti-HER2/neu] that was not 
chemotherapeutic-resistant. Majority of published descrip-
tions to date that report in current literature the efficacy of 
covalent immunochemotherapeutics or analogous biop-
harmaceutical agents utilize human neoplastic cell popula-
tions that are chemotherapeutic-resistant. Rare exceptions 
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have been the application of chemotherapeutic-resistant 
metastatic melanoma M21 (covalent daunorubicin immu-
nochemotherapeutics synthesized using anti-chondroitin 
sulfate proteoglycan 9.2.27 surface marker);[89;92;170] 
chemotherapeutic-resistant mammary carcinoma MCF-
7AdrR (covalent anthracycline-ligand chemotherapeutics 
utilizing epidermal growth factor (EGF) or an EDF frag-
ment);[171] and chemotherapeutic-resistant mammary 
adenocarcinoma (SKBr-3) populations (epirubicin-anti-
HER2/neu,[66,85,102]     epirubicin-anti-EGFR,[66] gem-
citabine-HER2/neu[97,98]) respectively.

iv.	Anti-neoplastic cytotoxicity of gemcitabine-(C4-amide)-
[anti-EGFR] in dual-combination with epirubicin-(C3-
amide)-[anti-HER2/neu] would likely have been sub-
stantially greater if either cellular proliferation had been 
assessed with [3H]-thymidine, or an ATP-based assay 
method was alternatively applied as an analysis modality 
because of their reportedly >10-fold greater sensitivity in 
detecting early cell injury compared to MTT vitality stain 
based assay methods.[172,173] Despite this consideration, 
MTT vitality stain based assays continue to be extensively 
applied for the routine assessment of true anti-neoplastic 
cytotoxicity of chemotherapeutics covalently incorporated 
synthetically into molecular platforms that provide prop-
erties of selective “targeted” delivery.[66,121-123,174-179] 
One of the significant advantages of MTT vitality stain 
based assays and methods applying similar reagents is that 
the ability to measure lethal cytotoxic anti-anti-neoplastic 
activity is generally considered to be superior to the detec-
tion of early-stage cellular injury that could potentially be 
reversible.

v.	Lastly, as previously eluded to, a high degree of probability 
suggests that the anti-neoplastic cytotoxicity of gemcitabine-
(C4-amide)-[anti-EGFR] in dual-combination with epiru-
bicin-(C3-amide)-[anti-HER2/neu] would likely of been 
greater if their efficacy had been delineated in-vivo against 
human neoplastic xenographs in animal hosts as a model for 
human cancer. In such a scenario, added levels of selective 
“targeted” anti-neoplastic cytotoxicity is attained through 
antibody-dependent cell cytotoxicity (ADCC), complement 
mediated cytolysis, and immunoglobulin initiated opsoniza-
tion similar to what has been observed with anti-CD20 and 
anti-CD52 administered for the treatment of certain forms 
of leukemia.

The benzimidazole tubulin/microtubule inhibitor, mebenda-
zole in combination with gemcitabine-(C4-amide)-[anti-EG-
FR] and epirubicin-(C3-amide)-[anti-HER2/neu] produced 
higher levels of anti-neoplastic cytotoxicity against chemo-
therapeutic-resistant mammary adenocarcinoma than did the	
dual covalent immunochemotherapeutic combination alone 
(Figure. 7). Such findings correlate with mebendazole ad-
ditively or synergistically contributing to the anti-neoplastic 
cytotoxicity of epirubicin-(C3-amide)-[anti-HER2/neu][160] 
and gemcitabine-(C4-amide)-[anti-HER2/neu][99]. Prelimi-
nary experimental investigations have detected vulnerabil-
ity of adrenocortical carcinoma (xenographs),[180] colorectal 
cancer,[181,182] hepatocellular carcinoma,[182,183] leuke-
mia,[184,185] lung cancer,[186] (non-small cell[186,187]), 

melanoma (chemo-resistant),[188] myeloma,[185] and ovar-
ian cancer,[183,189-191] to benzimidazole tubulin/microtu-
bule inhibitors. The anti-neoplastic cytotoxicity of the benzi-
midazole class of tubulin/microtubule inhibitors against breast 
cancer has previously remained largely unknown. In contrast 
to a single report for flubendazole, the creation of mammalian 
chromosomal aberrations has to date not been described for 
either albendazole[181,189] or mebendazole[192].

The dual-combination of gemcitabine-(C4-amide)-[anti-EG-
FR] with epirubicin-(C3-amide)-[anti-HER2/neu] presents 
several opportunities for inducing lower frequencies of severe 
in-vivo sequelae. The covalent bonding of chemotherapeutics 
to a high-molecular weight delivery platform to facilitate se-
lective “targeted” delivery effectively avoids innocent high-
level exposure of normal tissues and organ systems to the 
chemotherapeutic moiety thereby reducing the risk and fre-
quency of severe dose-dependent sequelae (e.g. anthracycline 
cardiotoxicity). Utilization of “carrier” platforms like immu-
noglobulin fractions that have a significantly larger mass/size 
(IgG MW ≅ 150-kDa) than gemcitabin, epirubicin and other 
conventional small molecular weight chemotherapeutics em-
ployed in the synthesis of covalent immunochemotherapeu-
tics also decreases the risk of chemotherapy-associated toxicity 
by several mechanisms. The much large molecular weight of 
gemcitabine-(C4-amide)-[anti-EGFR] and epirubicin-(C3-
amide)-[anti-HER2/neu] drastically reduces the rate and ex-
tent that gemcitabine and epirubicin are removed from the 
plasma compartment and excreted into the urine by renal glo-
merular filtration (MWCO ≅ 50-kDa). In this manner highly 
renal-toxic chemotherapeutics can potentially be covalently 
bound to large molecular weight “targeting” platforms (e.g. 
IgG, Fab’, EGF) to increase their utility as a form of systemic 
anti-cancer therapy. The substantially lower rate and extent 
that large molecular weight covalent immunochemotherapeu-
tics like gemcitabine-(C4-amide)-[anti-EGFR] and epirubicin-
(C3-amide)-[anti-HER2/neu] are eliminated from the intra-
vascular compartment by renal excretion in turn significantly 
prolongs and extends the chemotherapeutic moiety pharma-
cokinetic profile (plasma T1/2) and therefore contact with neo-
plastic lesions for longer periods of time per systemic dose. 
The potential for covalent immunochemotherapeutics to pro-
mote greater cytosol concentrations of the chemotherapeutic 
moiety than can be achieved by simple passive diffusion of the 
“free” chemotherapeutic from the extracellular fluid compart-
ment can provide a level of safety because they provide an op-
portunity for more rapid resolution of neoplastic conditions 
at lower total dose requirements. Lastly, selectively “targeted” 
chemotherapeutic delivery allows the use of additive or syn-
ergistic chemotherapeutic combinations that otherwise could 
not previously be utilized in combination with one another 
due to dose-limiting sequelae.

Covalent immunochemotherapeutics like the dual-combi-
nation of gemcitabine-(C4-amide)-[anti-EGFR] with epiru-
bicin-(C3-amide)-[anti-HER2/neu] at least conceptually can 
therefore afford the attributes of greater anti-neoplastic cyto-
toxicity and prolongation of chemotherapeutic moiety phar-
macokinetic profiles that can subsequently serve collectively 
as the basis for reducing individual and total dosage require-
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ments. Improved margins-of-safety are therefore possible with 
gemcitabine-(C4-amide)-[anti-EGFR], epirubicin-(C3-amide)-
[anti-HER2/neu] and analogous covalent immunochemo-
therapeutics through a combination of selective “targeted” 
anti-neoplastic cytotoxicity that avoids high-level innocent 
exposure of normal tissues and organ system, and reductions 
in total dosage requirements necessary for disease resolution 
when implemented for intervention in clinical oncology. The 
benzimidazole tubulin/microtubule inhibitor, mebendazole 
can potentially complement and enhance these properties of 
dual gemcitabine-(C4-amide)-[anti-EGFR] with epirubicin-
(C3-amide)-[anti-HER2/neu] combinations in part because 
of it’s anti-neoplastic cytotoxicity and because it may have a 
wider margin-of-safety than many if not most conventional 
chemotherapeutic agents.

Conclusions
The covalent immunochemotherapeutics, gemcitabine-(C4-
amide)-[anti-EGFR] and epirubicin-(C3-amide)-[anti-HER2/
neu] both exerted selectively “targeted” anti-neoplastic cy-
totoxicity against chemotherapeutic-resistant mammary ad-
enocarcinoma (SKBr-3) populations (Figures. 4 and 5). The 
simultaneous dual-combination of gemcitabine-(C4-amide)-
[anti-EGFR] with epirubicin-(C3-amide)-[anti-HER2/neu] 
exerted at least additive levels of anti-neoplastic cytotoxicity 
which during the relatively brief incubation periods applied 
is primarily a result of the mechanisms-of-action for the two 
chemotherapeutic moieties, and also the anti-trophic proper-
ties of both anti-EGFR and anti-HER2/neu (Figures. 4 and 5). 
The biological integrity of the immunoglobulin component of 
the covalent gemcitabine and epirubicin immunochemothera-
peutics not only directly facilitates selective “targeted” chemo-
therapeutic delivery, but it also initiates or induces internali-
zation of covalent immunochemotherapeutics by mechanisms 
of receptor-mediated-endocytosis. Selection of an appropri-
ate membrane-associated antigen that is known to undergo 
receptor-mediated-endocytosis maximizes the active trans-
membrane transport of chemotherapeutic moieties in cova-
lent immunochemotherapeutics and many carcinoma and ad-
enocarcinoma cell types highly over-express EGFR, HER2/neu 
and similar membrane associated receptor sites[125].

Simultaneous dual-combination of gemcitabine-(C4-amide)-
[anti-EGFR] with epirubicin-(C3-amide)-[anti-HER2/neu] 
not only serves as a molecular strategy for increasing cytosol 
concentrations of small molecular weight chemotherapeutics 
beyond levels attainable by simple passive diffusion following 
intravenous infusion at clinically relevant dosages, it also rep-
resents an approach for reducing exposure of innocent tissues 
and organ systems. Mebendazole further complements these 
therapeutic attributes by evoking a higher level of anti-neo-
plastic cytotoxic against chemotherapeutic resistant mammary 
adenocarcinoma (SKBr-3) when applied in combination with 
both gemcitabine-(C4-amide)-[anti-EGFR] with epirubicin-
(C3-amide)-[anti-HER2/neu] compared to the dual-combi-
nation of only the two covalent immunochemotherapeutics. 
Collectively, research investigations with gemcitabine-(C4-
amide)-[anti-EGFR], epirubicin-(C3-amide)-[anti-HER2/neu] 
and mebendazole demonstrate therapeutic options for more 
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