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Abstract
The electrocardiogram (ECG) signals contain many types of noises- baseline wander, powerline interference, electromyo-
graphic (EMG) noise, electrode motion artifact noise. Baseline wander is a low-frequency noise of around 0.5 to 0.6 Hz. To 
remove it, a high-pass filter of cut-off frequency 0.5 to 0.6 Hz can be used. Powerline interference (50 or 60 Hz noise from 
mains supply) can be removed by using a notch filter of 50 or 60 Hz cut-off frequency. EMG noise is a high frequency noise of 
above 100 Hz and hence may be removed by a low-pass filter of an appropriate cut-off frequency. Electrode motion artifacts 
can be suppressed by minimizing the movements made by the subject. The chapter introduces the types of common noise 
sources in ECG signals and simple signal processing techniques for removing them, and also presents a section of Matlab 
code for the techniques described.

Keywords: Baseline wander, powerline interference, electrode motion artifacts, EMG noise, low-pass filter, high-pass filter, 
notch filter
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Introduction  
 Electrocardiogram (ECG) is a signal that describes 
the electrical activity of the heart. The ECG signal is 
generated by contraction (depolarization) and relaxation 
(repolarization) of atrial and ventricular muscles of the 
heart. The ECG signal contains- a P wave (due to atrial 
depolarization), a QRS complex (due to atrial repolarization 
and ventricular depolarization) and a T wave (due to 
ventricular repolarization). A typical ECG signal of a normal 
subject is shown in (figure 1). In order to record an ECG signal, 
electrodes (transducers) are placed at specific positions on the 
human body. Artifacts (noise) are the unwanted signals that 
are merged with ECG signal and sometimes create obstacles 
for the physicians from making a true diagnosis. Hence, it is 
necessary to remove them from ECG signals using proper 
signal processing methods. There are mainly four types 
of artifacts encountered in ECG signals: baseline wander, 
powerline interference, EMG noise and electrode motion 
artifacts. They are discussed briefly below.

Figure 1: An ECG signal with typical time intervals
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1.1 Baseline Wander

Baseline wander or baseline drift is the effect where the base 
axis (x-axis) of a signal appears to ‘wander’ or move up and 
down rather than be straight. This causes the entire signal 
to shift from its normal base. In ECG signal, the baseline 
wander is caused due to improper electrodes (electrode-skin 
impedance), patient’s movement and breathing (respiration). 
Figure 2 shows a typical ECG signal affected by baseline 
wander. 

The frequency content of the baseline wander is in the range 
of 0.5 Hz. However, increased movement of the body during 
exercise or stress test increase the frequency content of 
baseline wander. Since the baseline signal is a low frequency 
signal therefore Finite Impulse Response (FIR) high-pass zero 
phase forward-backward filtering with a cut-off frequency of 
0.5 Hz to estimate and remove the baseline in the ECG signal 
can be used [3].

 

Figure 2: An ECG Signal with baseline wander (drift) [1]

1.2 Powerline Interference

Electromagnetic fields caused by a powerline represent a 
common noise source in the ECG, as well as to any other 
bioelectrical signal recorded from the body surface. Such 
noise is characterized by 50 or 60 Hz sinusoidal interference, 
possibly accompanied by a number of harmonics. Such 
narrowband noise renders the analysis and interpretation of 
the ECG more difficult, since the delineation of low-amplitude 
waveforms becomes unreliable and spurious waveforms may 
be introduced. It is necessary to remove powerline interference 
from ECG signals as it completely superimposes the low 
frequency ECG waves like P wave and T wave. (Figure 3) shows 
an ECG signal typically affected by a powerline interference.

Figure 3: ECG affected by powerline (50/ 60 Hz) interference 
[2]

1.3 EMG Noise

The presence of muscle noise represents a major problem in 
many ECG applications, especially in recordings acquired 
during exercise, since low amplitude waveforms may 
become completely obscured. Muscle noise is, in contrast 
to baseline wander and 50/60 Hz interference, not removed 
by narrowband filtering, but presents a much more difficult 
filtering problem since the spectral content of muscle activity 
considerably overlaps that of the PQRST complex. Since the 
ECG is a repetitive signal, techniques can be used to reduce 
muscle noise in a way similar to the processing of evoked 
potentials. Successful noise reduction by ensemble averaging 
is, however, restricted to one particular QRS morphology at 
a time and requires that several beats be available. Hence, 
there is still a need to develop signal processing techniques 
which can reduce the influence of muscle noise [4]. Figure 
below shows an ECG signal interfered by an EMG noise. 

Figure 4: ECG signal with electromyographic (EMG) noise

1.4 Electrode Motion Artifacts

Electrode motion artifacts are mainly caused by skin 
stretching which alters the impedance of the skin around the 
electrode. Motion artifacts resemble the signal characteristics 
of baseline wander, but are more problematic to combat since 
their spectral content considerably overlaps that of the PQRST 
complex. They occur mainly in the range from 1 to 10 Hz. In 
the ECG, these artifacts are manifested as large-amplitude 
waveforms which are sometimes mistaken for QRS complexes. 
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Electrode motion artifacts are particularly troublesome in the 
context of ambulatory ECG monitoring where they constitute 
the main source of falsely detected heartbeats. A typical ECG 
signal affected by electrode motion artifact is shown in (Figure 
5) below.

Figure 5: ECG affected by electrode motion artifacts [2]

2. Techniques to Remove Artifacts from ECG 
Signal 
 
In this section, various signal processing methods for 
removing the artifacts from ECG signal have been described. 
These methods are simple yet effective. The section also 
includes the Matlab programs along with their results for the 
described methods. 
 

2.1 Techniques for Removal of Baseline Wander 
 
A straightforward approach to the design of a filter is to 
choose the ideal high-pass filter as a starting point [4],
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or by another window function if more appropriate. Such an 
FIR filter should have an order 2L + 1 of approximately 1150 to 
achieve a reasonable trade-off between stopband attenuation 
(at least 20 dB) and the width of the transition band.

Matlab code to remove baseline wander using high-pass filter

clear all
Fs = 360; % Sampling Frequency
 
N = 50; % Order
Fc = 0.667; % Cutoff Frequency
 
% Construct an FDESIGN object and call its BUTTER method.
h = fdesign. lowpass ('N,Fc', N, Fc, Fs);
Hd = butter(h);
  
x=load('100.txt'); % load the ECG signal
x1=x(:,2);
x2=x1./ max(x1);
 
subplot (2,1,1), plot(x2), title ('ECG Signal with low-frequency 
(baseline wander) noise'), grid on
 
y0=filter (Hd, x2);

subplot (2,1,2), plot(y0), title ('ECG signal with baseline 
wander REMOVED'), grid on
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(Figure 6): ECG signal with baseline wander (above); ECG 
signal with baseline wander removed (below) using high-pass 
filter.

Wavelet transform can also be used to remove the baseline 
wander from ECG signal. The frequency of baseline wander is 
approximately 0.5 Hz. According to discrete wavelet transform 
(DWT), the original signal is to be decomposed using the 
subsequent low-pass filters (LPF) and high-pass filters (HPF). 
The cut-off frequency for LPF and HPF will be half of the 
sampling frequency. For example, if the sampling frequency 
is 250 Hz, then 125 Hz will be the cut-off frequency for both 
LPF and HPF in the first level decomposition. In second level 
decomposition, the cut-off frequency becomes 62.5 Hz, for 
third level decomposition it becomes 31.25 Hz and so on. 
Thus, it will require nine- level decomposition using DWT to 
remove a baseline wander of 0.5 Hz frequency. Following is the 
Matlab code to remove baseline wander from an ECG signal 
using DWT.

Matlab code to remove baseline wander using DWT

x=load ('100.txt');
x1=x (:,2);
x2=x1. /1000;
x2=x2 (170000:215000);
subplot (2,1,1), plot(x2), title ('ECG Signal with baseline 
wander'), grid on
 [C, L] = wavedec (x2,9,'bior3.7'); % Decomposition 
  a9 = wrcoef ('a', C, L,'bior3.7',9); % Approximate Component
 d9 = wrcoef ('d', C, L,'bior3.7',9); % Detailed components
d8 = wrcoef ('d', C, L,'bior3.7',8);
d7 = wrcoef ('d', C, L,'bior3.7',7);
d6 = wrcoef ('d', C, L,'bior3.7',6);
d5 = wrcoef ('d', C, L,'bior3.7',5);
d4 = wrcoef ('d', C, L,'bior3.7',4);
d3 = wrcoef ('d', C, L,'bior3.7',3);

d2 = wrcoef ('d', C, L,'bior3.7',2);
d1 = wrcoef ('d', C, L,'bior3.7',1);
 
y= d9+d8+d7+d6+d5+d4+d3+d2+d1;
 
subplot (2,1,2), plot(y), title ('ECG Signal after baseline wander 
REMOVED'), grid on

 

Figure 7: ECG signal with baseline wander (above); ECG signal 
with baseline wander removed (below) using DWT.

2.2 Techniques for Removal of Powerline Interference

A very simple approach to the reduction of powerline 
interference is to consider a filter defined by a complex-
conjugated pair of zeros that lie on the unit circle at the 

interfering frequency 
0

1,2
jz e ω±=
[4], 
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Where 0    1r< < . Thus, the transfer function of the 
resulting IIR filter is given by
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The notch bandwidth is determined by the pole radius r and 
is reduced as r approaches the unit circle. Figure 8 shows 
the impulse response and the magnitude function for two 
different values of the radius, r = 0.75 and 0.95. From Figure 
8 it is obvious that the bandwidth decreases at the expense of 
increased transient response time of the filter. The practical 
implication of this observation is that a transient present 
in the signal causes a ringing artifact in the output signal. 
For causal filtering, such filter ringing will occur after the 
transient, thus mimicking the low-amplitude cardiac activity 
that sometimes occurs in the terminal part of the QRS 
complex, i.e., late potentials [4].

Figure 8: Pole-zero diagram for two second-order IIR filters 
whose zeros are identically positioned but whose poles are at a 
radius r of either 0.75 or 0.95. The impulse response h (k) and 
the corresponding magnitude function are shown in the left 
and right panels, respectively [4].



Matlab code to remove powerline interference from 
ECG signal

Clear all
 
Fs = 360; % Sampling Frequency
Fnotch = 0.67; % Notch Frequency
BW = 5; % Bandwidth
Apass = 1; % Bandwidth Attenuation
 
[b, a] = iirnotch (Fnotch/ (Fs/2), BW/(Fs/2), Apass);
Hd = dfilt.df2 (b, a);
 
x=load ('100.txt');
x1=x (:, 2);
x2=x1. / max(x1);
Subplot (3, 1, 1), plot(x2), title ('ECG Signal with baswline 
wander'), grid on
 
y0=filter (Hd, x2);
Subplot (3, 1, 2), plot(y0), title ('ECG signal with low-frequency 
noise (baswline wander) Removed'), grid on
 
Fnotch = 60; % Notch Frequency
BW = 120; % Bandwidth
Apass = 1; % Bandwidth Attenuation
 
[b, a] = iirnotch (Fnotch/ (Fs/2), BW/ (Fs/2), Apass);
Hd1 = dfilt.df2 (b, a);
 
y1=filter (Hd1, y0);
Subplot (3, 1, 3), plot (y1), title ('ECG signal with power line 
noise Removed'), grid on

The above Matlab code implements two IIR notch filters: one 
for removing the baseline wander with a notch concentrated at 
0.67 Hz and another for removing the powerline interference 
with a notch concentrated at 60 Hz. The results of the code are 
shown in (figure 9) below.

(Figure 9): Original ECG signal containing both baseline 
wander and powerline interference (top); ECG signal with 
baseline wander removed (middle); ECG signal with powerline 
interference removed (bottom)

2.3 Techniques for Removal of Electromyographic (EMG) 
Noise

The EMG noise is a high-frequency noise; hence an n-point 
moving average (MA) filter may be used to remove, or at least 
suppress, the EMG noise from ECG signals. The general form 
of an MA filter is

0
( )  ( )

n

k
k

y n b x n k
=

= −∑    (10)

Where x and y are the input and output of the filter, respectively. 
The bk values are the filter coefficients or tap weights, k = 0, 
1, 2, . . . , N, where N is the order of the filter. The effect of 
division by the number of samples used (N + 1) is included in 
the values of the filter coefficients. The signal-flow diagram of 
a generic MA filter is shown in (Figure 10) [5].
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(Figure 10): Signal-flow diagram of a moving-average filter of 

order N. Each block with the symbol 1z−  represents a delay of 
one sample, and serves as a memory unit for the corresponding 
signal sample value [5].

Increased smoothing may be achieved by averaging signal 
samples over longer time windows, at the expense of increased 
filter delay. If the signal samples over a window of eight samples 
are averaged, we get the output as [5]
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The transfer function of the filter is
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The 8-point MA filter may be rewritten as

                                                                  (13)

The recursive form as above clearly depicts the integration 
aspect of the filter. The transfer function of this expression is 
easily derived to be
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(Figure 11) shows a segment of an ECG signal with high-
frequency noise. (Figure 12) shows the result of filtering the 
signal with the 8-point MA filter described above. Although 
the noise level has been reduced, some noise is still present 

in the result. This is due to the fact that the attenuation of 
the simple 8-point MA filter is not more than -20 dB at most 
frequencies (except near the zeros of the filter) [5].

(Figure 11): ECG signal with high-frequency (EMG like) 
noise; fs = 1,000 Hz [5]

(Figure 12): The ECG signal with high-frequency (EMG like) 
noise in (Figure 11) after filtering by the 8-point MA filter [5]

Another approach to dealing with this problem is offered by 
time-varying lowpass filtering using a filter with a variable 
frequency response. For example, a filter with a Gaussian 
impulse response has been suggested for this purpose as the 
filters bandwidth is easily changed from one sample to another 

through a function ( )nβ which defines the width of the 
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Gaussian [4],
2( )( , ) ~ n kh k n e β−    (15)

The width function ( )nβ  is designed to reflect local signal 
properties so that smooth segments of the ECG are subjected 
to considerable low-pass filtering, whereas the QRS interval, 
with its much steeper slopes, largely remains unfiltered. By 

making ( )nβ  proportional to the derivative of the signal, 

slow signal changes produce small values of ( )nβ , thus 
making the Gaussian impulse response to decay more slowly to 
zero so as to produce greater noise suppression, and vice versa. 

Details of designing the width function ( )nβ , truncating h 
(k, n) in (15), and the resulting performance on ECG signals 
can be found in [5]. The idea of adapting the cut-off frequency 
of a linear low-pass filter to the slopes of the ECG has also 
been explored for other types of filters [4, 6 – 8]. For more 
mathematical details of time-varying filters, references [6 – 9] 
may be referred. 

2.4 Techniques for Removal of Electrode Motion 
Artifacts

One of the widely used techniques for removing the electrode 
motion artifacts is based on adaptive filters. The general 
structure of an adaptive filter for noise canceling utilized in 
this paper requires two inputs, called the primary and the 
reference signal. The former is the d(t) = s(t) + n1(t) where s(t) 
is an ECG signal and n1(t) is an additive noise. The noise and 
the signal are assumed to be uncorrelated. The second input is 
a noise u(t) correlated in some way with n1(t) but coming from 
another source. The adaptive filter coefficients wk are updated 
as new samples of the input signals are acquired. The learning 
rule for coefficients modification is based on minimization, in 
the mean square sense, of the error signal e(t) = d(t) − y(t) 
where y(t) is the output of the adaptive filter. A block diagram 
of the general structure of noise cancelling adaptive filtering 
is shown in figure 13 [10]. The two most widely used adaptive 
filtering algorithms are the Least Mean Square (LMS) and the 
Recursive Least Square (RLS).

Figure 13: Block diagram of adaptive filtering scheme [10]

Matlab code to remove (electrode) motion artifacts 
from ECG

Clear all
y1=load ('ECG1.txt'); % this is an ECG signal with motion 
artifacts
 
y2= (y1 (:,1)); % ECG signal data
a1= (y1 (:,1)); % accelerometer x-axis data
a2= (y1 (:,1)); % accelerometer y-axis data
a3= (y1 (:,1)); % accelerometer z-axis data
 
y2 = y2/max (y2);
Subplot (3, 1, 1), plot (y2), title ('ECG Signal with motion 
artifacts'), grid on
 
a = a1+a2+a3;
a=a/max (a);
 
Mu= 0.0008;
Hd = adapt filt. Lms (32, mu);
[s2, e] = filter (Hd, a, y2);
Subplot (3, 1, 2); plot (s2), title ('Noise (motion artifact) 
estimate'), grid on
 
Subplot (3, 1, 3), plot (e), title ('Adaptively filtered/ Noise free 
ECG signal'), grid on

Figure 14: Removal of motion artifacts from ECG using 
adaptive filtering. (top) ECG signal with motion artifacts, 
(middle) noise/ motion artifact, (bottom) noise-free ECG 
signal
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