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Abstract 

 We developed a sensitive color sensor module to examine the physiological status of the human cardio-
vascular system. The module displays breathing rhythm and heartbeat activity in real-time. The skin lightness 
and skin color expressed in the CIELAB color coordinate system fluctuate according to the rhythm of breath-
ing and the heartbeat because of changes in the relative concentrations of oxygenated and deoxygenated he-
moglobin species and the blood volume pulse (BVP) in the skin tissue. Using a Gaussian mixture model, the 
cardiovascular system was found to fall into three physiological states. The state distribution profiles deduced 
from skin color variation differed before and after physical exercise. The distributions were also different be-
tween young adults with different physical exercise habits. Our result showed that regular exercise can reduce 
the heartbeat rate (HR) while increasing the BVP for each heartbeat. Compared with young people, elderly 
people exhibited increased HR with reduced BVP owing to the reduced efficiency of their aged cardiovascular 
system. Our results suggest that skin color variation may be a useful indicator of self-health management. 

Keywords: skin color; photoplethysmography; heartbeat rate; blood volume pulse; principal component analysis; 
Gaussian mixture model; hidden Markov model.
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Introduction
 The skin is the largest organ in the human body due to its 
largest surface area. It is responsible for isolating internal organs 
from external pollution and germs and serves as the body’s 
first line of defense against external threats [1]. It also prevents 
water evaporation and heat loss from the body. In addition, it 
can provide the first indication of the state of our physiological 
system. Based on an understanding of the skin’s functional 
properties, diagnostic techniques have been developed to acquire 
pathological information. For example, practitioners of traditional 
Chinese medicine (TCM) have long used the skin appearance 
observation technique to acquire pathological information on 
a patient [2]. Furthermore, skin cupping is a popular physical 
therapy used by TCM practitioners [3]; it involves the production 
of partial vacuum effects on the skin and its associated muscle 
layers to increase the metabolism and detoxification capabilities 
of the body [3]. This therapeutic technique can treat a variety 
of headaches [4]. As the skin can reflect the symptoms of some 
diseases, observation of changes in skin appearance, particularly 
skin color, has attracted considerable interest from biomedical 
researchers. Indeed, physicians often use skin color as the first 
indication of jaundice [5] and methemoglobinemia [6]. It is gen-
erally believed that a rosy complexion indicates good health [7]. 
Ruddy skin represents greater blood perfusion and higher blood 
oxygen saturation in the skin tissue [8]. Pale skin is often asso-
ciated with anemia caused by a lack of hemoglobin. Blood per-
fusion can improve with physical exercise [9], and it commonly 
decreases in diabetes [10] or hypertension [11, 12]. Increased 
blood oxygen saturation indicates a high degree of aerobic fit-
ness. Coronary heart disease and respiratory diseases tend to 
reduce blood oxygen saturation, leading to hypoxia [12] and 
cyanosis [13]. In recent years, with a rise in health awareness, 
the concept of self-health management has attracted increasing 
attention from physicians for its possible preventive effect against 
modern lifestyle diseases [14]. Self-health management can re-
duce the occurrence of chronic diseases and consequently the 
number of and need for medical treatments and hospitalization 
[15]. Ensuring the accessibility of non-invasive instruments, es-
pecially those that can be operated with non-medical personnel, 
is crucial to realize the potential of self-health management. Ex-
amples of such instruments include infrared thermal imaging 
[16] or thermal sensing materials [17] to monitor skin tempera-
ture changes, or iontophoresis to monitor skin glucose con-
centrations to control diabetes [18]. Plethysmography (PG) is 
a technique that detects the cardiovascular pulse waves traveling 
through the human body. Photo-plethysmography (PPG) uses 
optical reflectance to implement PG [19, 20]. As blood exhibits 
greater light absorbance than its surrounding tissue, variations in 

the blood volume can be reflected by changes in light reflectance. 
A smaller blood volume in skin tissue generates greater optical 
reflectance and a higher PPG signal [21]. Non-contact PPG has 
been demonstrated in some studies [22–24] using low-cost video 
cameras [22]. However, most previous PPG studies have focused 
on demonstrating the functionality of this technique, leaving cer-
tain critical issues understudied. For example, is the physiologi-
cal status of the human cardiovascular system appropriately de-
scribed in a state space [25]? Can the relevant states be described 
using the heartbeat rate (HR) and blood volume pulse (BVP)? 
What are the unique features of these states? To answer these 
questions, we designed and fabricated a handheld color sensor 
module to examine the physiological status of the human body in 
vivo [26]. Compared with imaging technology, our color sensor 
module has greater sensitivity and a higher signal-to-noise (S/N) 
ratio. It can record both slow and rapid color changes in the skin. 
The measured color variation amplitudes provide a clean wave-
form of breathing and heartbeat rhythm in real-time, yielding 
valuable HR and BVP data for each heartbeat. In this study, we 
verified that color variations in the heartbeat rhythm stem from 
the BVP, whereas those in the breathing cycles reflect changes 
in the relative concentrations of oxygenated and deoxygenated 
hemoglobin species in the blood volume of the skin. The prob-
ability distributions of physiological states reflected by the skin 
color changes were retrieved using Gaussian mixture models 
(GMMs) that revealed different distributions before and after 
physical exercise. The distributions deduced from the skin color 
variation also differed between young adults with different physi-
cal exercise habits. The results indicate that regular exercise could 
reduce HR while increasing BVP for each heartbeat. Compared 
with young people, elderly people exhibit increased HR with re-
duced BVP per heartbeat owing to the reduced efficiency of their 
aged cardiovascular system. Our results suggest that skin color 
variation may be a useful indicator of self-health management 
using a portable color sensor.

Experimental Procedure

Electronics and light-collection optics of the 
color sensor module
 The color sensor module includes a light-collection sec-
tion to efficiently acquire the diffuse reflectance signal from the 
region of interest (ROI) and can deliver at least 54 lux to the sen-
sor’s active area [26]. Of the received power, the signal from the 
ROI only decreases from 100% to 60% when the target-to-sensor 
distance increases from 4 cm to 10 cm, displaying a satisfactory 
differentiation ability for the ROI.



 
3

 
J Biomed Eng Res 2020 | Vol 4: 102  JScholar Publishers                  

 The diffuse reflectance signal is detected using an RGB 
color sensor (Hamamatsu S9032) [27] that can deliver a photo-
current of 9–20 nA at the RGB channels under 50 lux illuminance. 
A low-noise electronic circuit is designed and assembled to con-
vert the photocurrent into voltage. The circuit can be divided 
into a current-to-voltage converter, a preamplifier, and AC and 
DC output stages. The AC channel provides a gain of 200 in a 
passband of 0.1–28 Hz, aiming to provide statistical information 
on the heartbeat. The DC channel amplifies the signal by 2 in a 
passband of 0–1.6 Hz and is designed to reveal color variations 
in the low-frequency region. The noise level in the passband at 
the AC output is less than -60 dB and can be lower than -100 dB 
to -120 dB at the DC output [26]. The measured gain profiles 
closely match the simulated curves, indicating that this circuit 
can amplify the color signals with an acceptable S/N ratio for 
this study.
 The color sensor module can provide six voltage signals 
at the AC and DC outputs. The electrical signals are converted 
to digital signals by a 24-Bit Delta-Sigma AD converter (Texas 
Instruments ADS124S06) [28] and stored in a computer or dis-
played in real-time. Typically, the sensor module is operated with 
a 100-Hz data acquisition cycle. Each cycle involves six cascading 
1.6-ms AD conversions, which add up to a data conversion pe-
riod of 9.6 ms. 

Color calibration procedure for the color 
sensor module
 To measure color variation for physiological status 
monitoring, the module needs to be calibrated to produce accu-
rate color coordinates of the skin. This can be achieved using the 
voltage values at the DC output, which are denoted as VDC = (Vr 
Vg Vb)

T. Note that the voltage at the i = R, G, B channel is related 
to the photocurrent Ii by Vi = AiIi with Ai reflecting the action of 
electronic amplification and frequency filter. The photocurrent is 
generated by an incident light S(λ) via Ii =∫S(λ). Fi(λ)dλ 
through a color filter Fi(λ). The resultant color coordinates (R 
G B) of the incident light S(λ) can be determined as follows:

 where r0 g0 b0 denotes the bias values in the RGB chan-
nels, and C is the calibration matrix to be determined. The off-di-
agonal elements of C originate from the finite spectral width of 
the R (G or B) light used [see the inset in (Figure 1 a)], which 
has non-zero overlap with the passbands of the color filters. For 
example, the red light centered at 630 nm can leak through the 
green color filter (60-nm bandwidth centered at 530 nm), yield-

ing a non-zero Cgr at the green channel.

 Figure. 1. (Color online) Color calibration of the color sensor 
module. (a) Normalized sensor output at the i-channel photodiode 
Xi = ∆Vi/∆Vi, max  (i=r, g, and b) as a function of the RGB color co-
ordinates of i-color light from a digital projector. The green and blue 
symbols at the r-channel photodiode (left) represent the data measured 
with this photodiode under green and blue light illumination, respec-
tively. The dashed curves are the third-order polynomial fit of the color 
coordinates to the measured data Xi. The insets at the middle section 
show the spectral profiles of the red (R=255), green (G=255), and blue 
(B=255) light used, which yield ∆Vi, max. (b) Post-calibration output at 
the i-channel photodide. The cross-talk in the calibrated data is closer 
to zero than that in (a).

(a)

(b)
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 To determine each element of the C matrix, we project 
the R (G or B) color light of a projector onto a standard white 
surface. The diffuse reflectance is measured with our color sen-
sor. The voltage changes ∆Vr at r channel with varying illumina-
tion intensities are normalized Xr = ∆Vr/∆Vr, max with the maxi-
mum voltage change ∆Vr, max at an Illuminance of 122 lux, which 
has a color coordinate of R=255, G=0, and B=0. This procedure 
is repeated for the g- and b-channels using the green and blue 
color outputs of the projector. As shown in Figure 1(a), the color 
coordinates used can fit a third-order polynomial of the mea-
sured values Xr, Xg and Xb, respectively. The values of Crr, Cgg, 
and Cbb can thereby be determined. The r-channel photodiode 
is responsive not only to the red light but also to the green and 
blue light. However, the photocurrents generated at the r-channel 
photodiode by the green and blue light encounter the same elec-
tronic circuit and therefore shall follow the same responsive curve 
as that produced by the red light. These data are displayed as the 
green and blue symbols on the left-hand side of the plot in (Fig-
ure 1a). The responses of the r-channel photodiode to the green 
and blue light provide the information needed to determine Cgr 
and Cbr. This is also true for the g- and b-channel photodiodes, 
whose responses can be used to determine Crg, Cbg and Crb, Cgb. 
The resultant calibration matrix for our color sensor module 
becomes 

After the calibration, the much lower coupling can be achieved 
with our color sensor as displayed in (Figure 1b). The direct 
readout values on a set of color cards agree well with known col-
or coordinates, indicating that the color coordinates of the skin 
can be read accurately by our color sensor without the need to 
detrend and invert the data [21]. 

Physiological implication of skin color 
variations

Breathing and heartbeat induced skin color 
variations
 Short segments of the DC signal (0–1.6 Hz) measured 
at the palm of a healthy 26-year-old Asian male are shown in 
(Figure 2 a). The color variations are caused by breathing-in-
duced absorption differences between the arterial blood and 
bloodless skin layers. The RGB color coordinates fluctuate at the 
skin tone (R = 153, G = 117, and B = 107) of this test subject. The 
amplitude of breathing-induced color variation is approximately 

1. Small ripples visible on the breathing signal envelopes are at-
tributable to heartbeats. We apply principal component analysis 
(PCA) to determine the breathing-induced color variation vec-
tors. (Figure 2 b) shows the first three PCA traces after removing 
the skin tone. The resulting principal component 1 (PC1), com-
prising 0.78 red, 0.33 green and –0.11 blue, closely follows the 
red and green signals and accounts for approximately 95% of the 
breathing-induced color variation, whereas PC2, which closely 
follows the blue signal, accounts for approximately 4.9% of the 
color changes.
(a)

(b)

(c)
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Figure 2: (Color online) Breathing-induced color coordi-
nate variations. (a) RGB color coordinates (at the palm of a 
healthy 26-year-old Asian male) determined from the DC out-
put channel (0–1.6 Hz) of the color sensor module. Small ripples 
visible on the breathing signal envelopes are attributable to 
heartbeats. (b) Corresponding PCA outputs of the RGB traces 
shown in (a) by removing the skin tone (R = 153, G = 117, 
and B = 107). (c) CIELAB color coordinate traces are relevant 
to (a) comprising lightness L*, the red/green opposing colors 
a*, and the yellow/blue opposing colors b*. (d) Corresponding 
PCA outputs of the L*a*b* traces shown in (c).

 Although distinctive breathing-induced color variations 
are visible in (Figure 2a), these variations may originate from 
changes in lightness or colors. To resolve this ambiguity, we 
convert the measured RGB coordinates into the CIELAB color 
system [29], which comprises lightness L*, the red/green opposing 
colors a*, and the yellow/blue opposing colors b*. A change from 
a red color to green yields negative a* values, whereas that from 
a green color to red yields positive a* values. A similar trend is 
also found for b* in the yellow/blue opposing colors. (Figure 
2c) presents the relevant results for the breathing-induced color 
variations. Unlike the RGB coordinates, L*a*b* reveals similar 
time-varying profiles. (Figure 2d) shows the first three PCA 
traces of the signals. The PC1, which accounts for approximately 
93.5% of the breathing-induced color variation, is comprised of 
0.42 L*, 0.05 a*, and 0.53 b*, indicating that most of the color 
changes occur at the yellow/blue opposing colors. We conclude 
that breathing increases the concentration of oxygenated 
hemoglobin species in the arterial blood and the increased 
absorption contrast in skin tissue results in the distinctive color 
changes in the yellow/blue region. Skin colors also carry BVP 
information [21]. To reveal this information, we present the col-
or signals from the AC channel (0.1–28 Hz) in (Figure 3a). The 
observed RGB color signals fluctuate with an amplitude of ap-
proximately 0.2. We apply PCA to determine the heartbeat-in-

duced color variation vectors. (Figure 3b) shows the first three 
PCA traces of the RGB signals. PC1 (black solid curve), compris-
ing 0.73 red, 0.2 green, and 0.07 blue, accounts for approximately 
89% of the heartbeat-induced color variation, whereas PC2 (red 
solid curve) accounts for 10% of the color variation.
(a)

(b)

(c)

(d)
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(d)

Figure 3: (Color online) Heartbeat-induced color coordinate 
variations. (a) RGB color coordinates at the palm of a healthy 
26-year-old Asian male retrieved from the AC channel output 
(0.1–28 Hz) of the color sensor module. (b) First three PCA com-
ponents of RGB traces shown in (a). (c) CIELAB color coordinate 
traces relevant to (a), comprising lightness L*, the red/green op-
posing colors a*, and the yellow/blue opposing colors b*. (d) First 
three PCA components of (c).
 Figure 3c presents the results for the heartbeat-induced 
color variations in the L*a*b* coordinate system. We find that 
most of the signal variations in RGB are caused by lightness 
changes. The variation in a* closely follows the variation in 
L*. This similarity is understandable, as BVP driven by the 
cardiovascular system can result in both lightness and red/
green color variations. At the peaks of L*, a* becomes more 
positive (i.e., redder). This observation agrees with the video 
recording result obtained using the Eulerian video magnification 
algorithm [30, 31]. The yellow/blue color variations along the b* 
axis are somewhat irregular, suggesting that the physiological 
process that causes yellow/blue skin color variations may differ 
from heartbeat-induced BVP. The corresponding PCA traces 
are shown in (Figure 3d). PC1, which is comprised of 0.37 L*, 
0.53 a*, and 0.1 b*, accounts for approximately 72% of the color 
variation, whereas PC2 accounts for 27% of the color variation.
 To further investigate the nature of the heartbeat-in-
duced color variation, both the AC color signals and the electro-
cardiographic (ECG) signal are displayed in (Figure 4a). ECG, 
which monitors the voltage changes caused by each heartbeat, 
provides a convenient timing reference. A good correlation is ob-
served between the color signals and the ECG. A Fourier trans-
form of the RGB signals is presented in (Figure 4b), showing a 
peak at 1.2 Hz that clearly stems from the heartbeat rhythm.

(a)

(b)

(c)
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(d)

Figure 4: Fast Fourier transform plot of heartbeat-induced color 
coordinate variations. (a) Measured RGB signals (R: top, G: mid-
dle, B: bottom) at the AC output of the color sensor module mea-
sured at the palm of a healthy 26-year-old Asian male. ECG traces 
(black) are plotted as the timing reference. (b) Fourier transform 
of the measured AC signals shown in (a). (c) RGB signal traces 
shown in (a) are expressed in the L*a*b* color coordinates (L*: 
top, a*: middle, b*: bottom). (d) Fourier transform of the L*a*b* 
color coordinate signals shown in (c).
 We convert the measured RGB color coordinates to the 
CIELAB color system [29] and display the L*a*b* traces in (Fig-
ure 4c). As illustrated in (Figure 3c), the variation in a* closely 
follows the variation in L*, which is also supported by the Fou-
rier transform of L* and a* signals shown in (Figure 4d). The 
heartbeat rhythm at 1.2 Hz disappears in the Fourier transform 
of b*, accompanied by the appearance of breathing feature at 
0.5 Hz. Based on the results presented in ( Figures 3 and 4), we 
conclude that most of the signal variations at heartbeat rhythm 
are attributable to changes in lightness and red/green opposing 
colors, originating from heartbeat-induced BVP. Whereas the b* 
color changes at 0.5 Hz is caused by breathing-induced concen-
tration increases of oxygenated hemoglobin species in the arteri-
al blood. Skin color signals reveal detailed information on the 
cardiorespiratory activity. 

Description of the physiological states of the 
human cardiovascular system with skin color 
coordinates 
 Localizing the peaks (tj)j=1,.,N displayed in Fig. 4 
and retrieving their peak amplitudes (aj)j=1,.,N are straight- 
forward processes. From (tj)j=1,.,N , the heartbeat periods 

(∆tj = tj+1 − tj)j=1,.,N −1 can also be deduced. The color 
variation amplitudes (aj)j=1,.,N and heartbeat periods (∆tj)

j=1,., N of 120-min-long PC1 signals from both the AC and 
DC channels are determined and used to label the physiologi-
cal states embedded in the RGB color signal. The data are fitted 
to GMMs [32] with different numbers of Gaussian components. 
The corresponding Bayesian information criterion [32] index is 
calculated and the results indicate that using a three-component 
GMM is the best way to address the fitting errors and the over-
fitting problem in this context.

The probability distribution of the physiological states of 
the human cardiovascular system at rest and after exercise
 The PC1 sequence of RGB data from the DC channel 
was collected over 6 days (1 hr each day), resulting in about 2,160 
breathing cycles. The resultant distribution of the physiological 
states on the plane of aj and ∆tj is shown on the left-hand side 
of (Figure 5). The breathing period in the state S1 highlighted in 
red is centered at 10 s, whereas those in the two other states are 
longer (S3: blue) or shorter (S2: green). The S2 state exhibits a 
breathing period of about half of that exhibited by the S1 state 
and shows weaker color variations. In contrast, compared with 
the S1 state, the S3 state represents deep breathing with a larger 
amplitude of color variation, and possibly more oxygen dissolved 
in the arterial blood. 
 To investigate how the physiological states respond to 
physical exercise, we apply the color sensor to the same subject 
after physical exercise. The plot on the right-hand side of (Figure 
5) shows the distribution of aj and ∆tj. It shows that the breathing 
period of the three states is reduced by a factor of 2 and is accom-
panied by weaker color variations, correlating with less oxygen 
dissolved in the arterial blood per breathing cycle.
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Figure 5: Gaussian mixture model fitting of breathing-induced color variation data. A 120-min PC1 signal trace from the DC output 
(0.1–28 Hz) of the color sensor module is fitted to the GMM of three states (S1 coded by red, S2 by green, and S3 by blue). The color 
signals are measured at the palm of a subject at rest (left) and after physical exercise (right).

 A sequence of RGB data is also acquired from the AC 
channel and fitted to the GMM. The distribution of aj and ∆tj 
from 29,000 heartbeats is presented in (Figure 6). Different am-
plitudes of color variation are observed for the three states. The 
S3 (blue) state stems from a rarer heartbeat activity, whose peri-
od is widely distributed and reveals the smallest color variation. 
The S2 (green) state has a heartbeat period of 0.75 s, which is 
similar to that of the S1 (red) state (0.7 s) but has a wider ∆tj 
distribution. The ∆tj distribution appears to be more tightly reg-
ulated in the S1 state than in the other two states.

Figure 6: Gaussian mixture model fitting of heartbeat-induced color variation data. A 120-min PC1 signal trace at heartbeat rhythm 
from the AC output of the color sensor module is fitted to the GMM of three states (S1 coded by red, S2 by green, and S3 by blue). The 
color signals are measured at the palm of a subject at rest (left) and after physical exercise (right).

 We can combine the data from the DC and AC chan-
nels to identify the differences in the distribution of heartbeat 
states during inhaling and exhaling periods. However, after care-
ful analysis, we find no difference in the GMM distributions of 
the heartbeats, indicating that in this healthy young subject, the 
BVP from heartbeats may be tightly regulated [33] and shows 
no difference between inhaling and exhaling. However, we notice 
that immediately after physical exercise, the peaks of the S1 and 
S2 state distributions shift down to ∆tj = 0.53 s, correlating with 
increased cardiovascular output. The S2 state also exhibits a nar-
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rower distribution profile along ∆tj and a weaker variation in aj. 
Interestingly, the S3 state is more widely distributed on aj. The 
data suggest that in response to exercise the cardiovascular sys-
tem makes the heartbeat periods of the S1 and S2 states shorter 
and skewed toward the S3 state to increase the oxygen supply 
to the body. The relaxation process of the cardiovascular system 
after physical exercise can be resolved by dividing a 120-min- 
long color sequence into a series of 5-min-long segments. As only 
a limited number of heartbeats are included in each interval, we 
can only use a Gaussian distribution profile to fit aj and ∆tj. As a 
reference, the cardiovascular system at rest is first characterized 
before physical exercise. The contours of the resultant Gaussian 
distribution are presented in black. The Gaussian distribution 
profiles extracted from each interval are coded from red to green. 
As shown in (Figure 7), immediately after physical exercise, the 
Gaussian distribution evolves from a vertical ellipse (red) to a 
near circle and then to a horizontal ellipse (green). Notably, from 
the observed shape evolution, the relaxation appears to evolve 
from S1 (red) to S2 (green) and then S3 (blue) in (Figure 6). In 
addition, the Gaussian distribution does not relax to the profile 
at rest even after 120-min of relaxation, suggesting that physical 
exercise may be able to exert a long-term effect on the cardiovas-
cular system.

Figure 7: Relaxation trajectory of heartbeat-induced color 
variation after physical exercise. A 120-min-long PC1 se-
quence is divided into a series of 5-min-long segments. aj 
and ∆tj extracted from each interval are fitted to a Gaussian 
distribution profile and the resultant contours are coded from 
red to green. Relaxation trajectory is displayed by connecting 
the centers (blue star symbols) of each contour profile with lines. 
The Gaussian distribution profile at rest is characterized before 
physical exercise and is presented in black.

Transition kinetics of the physiological states of the 
human cardiovascular system at rest
 GMM can provide information on the distributions of 
physiological states, but cannot yield relevant time-domain infor-
mation. Some critical questions remain unanswered. For example, 
does the cardiovascular system switch rapidly between the three 
states or be trapped in one or two states, only rarely making state 
transitions? To deduce such time-domain information from our 
measurements, we fit PC1 traces of the AC channel to a Gaussian 
hidden Markov model [33]. To perform the analysis, the mod-
el parameters, which include initial population probabilities for 
each hidden state, the transition probabilities, and the means and 
covariance matrix of the Gaussian emission probabilities are first 
prepared. We take the results of the GMM analysis and randomly 
generate a transition probability matrix as the initial model pa-
rameters. We then refine these model parameters using the ex-
pectation-maximization algorithm. Finally, by using the refined 
model parameters a forward-backward algorithm is applied to 
predict the hidden state sequence with the observed PC1 data 
sequence as an input. The predicted probability distributions of 
the hidden state population are presented in (Figure 8a). The 
highest probability values of the heartbeat period are found to 
be 0.7 s for S1 and 0.75 s for S2. S1 has a larger color variation 
amplitude than S2, whereas S3 exhibits the lowest color variation 
across a wide heartbeat period. The black line offers a conve-
nient projection of the data points, yielding histograms of inline 
distances for each state in (Figure 8b). In (Figure 8c), the inline 
distances of 4,000 data sequences are plotted against the times of 
occurrence to reveal the transition kinetics. As shown, the car-
diovascular system does not switch rapidly between S1 and S2 
states but is trapped in S1 or S2 states and does a state transition 
occasionally. The hidden state transition kinetics collected from 

(a)
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(b)

(c)

(d)

Figure 8: Hidden Markov model fitting of heartbeat-induced 
color variation data. (a) A 360-min PC1 signal trace taken from 
the AC output of the color sensor module is fitted to the hidden 
Markov model with three hidden states (S1 coded as green, S2 
as red, and S3 as blue). The black line is a projection of the data 
points. (b) Histograms of the three hidden states along the black 
projection line. (c) The inline distances of 4,000 data sequences 
are plotted against the times of occurrence to reveal the tran-
sition kinetics. (d) The hidden state transition diagram collect-
ed from a 360-min-long sequence. This figure has been revised 
from ref. [26] to make the discussion of this paper more com-
plete.

Our GMM and HMM results can be best illustrated by viewing 
the human cardiovascular system as a periodically driven 
dynamical system and describe the resulting physiological 
status in state-space representation. The main purpose of the 
state space model is to present an abstract concept of the actual 
dynamical processes of the cardiovascular system. Because many 
physiological parameters and conscious/subconscious factors 
can affect the physiological states, the cardiovascular system will 
behave stochastically, implying the physiological states can only 
be depicted with a probability distribution.
 
 The data shown above suggest that the stochastic dy-
namics of the cardiovascular system can be described in a state-
space span by (aj) and (∆tj), where the feature of (∆tj) can reflect 
the stochasticity of heartbeat periodicity and (aj) will expose the 
system responses, such as BVP, in terms of color coordinates. 
From HMM analysis, we found that the occupation probabilities 
of S1 (green), S2 (red), and S3 (blue) are 0.32, 0.46, and 0.22, re-
spectively. The unique features of these states suggest that the car-
diovascular system appears to reside in the S1 or S2 states for most 
of the time, occasionally transitioning to S3. Although a robust 
biological system is usually tightly regulated, it may still possess 
the flexibility needed to adapt and survive in different physiolog-
ical conditions. Thus, we reason that the latter state may provide 
the cardiovascular system with the freedom it needs to adapt to 
conditions that demand a rapid increase in cardiovascular out-
put. 

Distribution of physiological states in different health 
conditions
 After showing that skin color can be used to reveal 
physiological conditions, we further study whether the color 
sensor can reveal the effect of physical exercise on physiological 
states. To reduce the complexity of our study, we include exer-
cise habit as the sole experimental factor among three 26-year-old 
healthy Asian male participants of the same age. Subject A had a 
habit of exercising daily, subject B only exercised 1-2 times per 
week irregularly, and subject C did not have a habit of exercising. 
Each subject rested on a chair for 5 minutes before measurement. 
A time series of L*a*b* color coordinates is collected and fits a 
Gaussian distribution profile. The resultant distribution contours 
are displayed in (Figure 9) with black (subject A), red (subject 
B) and blue (subject C). The figure shows that subject A exhibits 
a strong beat-to-beat variation in a* and longer heartbeat peri-
ods, whereas subject C shows a weaker beat-to-beat variation 
and shorter heartbeat periods. A larger a* variation indicates a 
stronger red-to-green color change per heartbeat and therefore 
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implies a larger BVP and a faster metabolic speed. Indeed, Levy, 
et al found that exercise training can increase parasympathetic 
tone and thus reduces the heartbeat rate at rest in both older and 
young groups [34]. Our result agrees with Levy’s conclusion but 
from a different perspective, indicating different health condi-
tions of participants at the same age can be distinguished by their 
heartbeat-induced skin color variations.

Figure 9: Physiological states for different health conditions. 
Gaussian distribution profile of 30-min heartbeat-induced col-
or variations (expressed in the L*a*b* coordinate system) in 
26-year-old healthy Asian males: one with a habit of daily physi-
cal exercise (black), one with a habit of irregular exercise (red), 
and one with a habit of no exercise (blue).

Distribution of the physiological states at different ages
 Our next study focuses on whether the distribution of 
skin color can deduce whether the physiological states are dif-
ferent at different ages. We measure the heartbeat-induced skin 
color changes in two volunteers. Volunteer A is a healthy 26-year-
old Asian male with a daily exercise habit, and volunteer B is 
a 65-year-old Asian male without a habit of exercise. As shown 
in (Figure 10), the younger volunteer (black) with regular exer-
cise exhibits a stronger variation in the a* color coordinate and 
a lower HR than those of the elderly volunteer (pink). Stein et al 
reported that HRs are significantly higher among older men than 
among younger men because both sympathetic and parasympa-
thetic modulation reduces with age [35]. Furthermore, accord-
ing to Strandell’s study, the amount of blood output by heartbeat 
also decreases as the cardiovascular system ages [36]. Our find-
ings presented in (Figure 10) support the notion that skin color 
variation may be a useful indicator of the physiological status of 
the human cardiovascular system.

Figure 10: Physiological states for different ages. Gaussian 
distribution profile of 30-min heartbeat-induced color variations 
in a 26-year-old (black) and a 65-year-old (pink) Asian male.

 The portable color sensor module could be a useful 
device for self-health management. For further development, it 
will be of high value to expand the RGB channels to the near-in-
frared region in viewing that crucial bio-active species in blood-
stream such as fat and proteins exhibit absorption from 1000 nm 
to 1500 nm. It is expected that changes in local concentrations 
of these species can result in skin color changes and is detectable 
with the color sensor module. Acquiring such data per heartbeat 
or breathing cycle could offer valuable dynamical information 
on the cardiorespiratory activity. Furthermore, as shown in [26], 
the relative delay time of the heartbeat-induced skin color signal 
to that of ECG was found to vary with measurement positions 
on the body, reflecting the cardiovascular pulse wave propagation 
delay from a neighboring artery to the measurement site. Follow-
ing the idea of pulse transient time measurements with ECG [37, 
38], continuous monitoring of blood pressure with a color sensor 
module may be possible. 

Conclusion
 In summary, we developed a skin color sensing tech-
nique to monitor the physiological status of the human cardio-
vascular system. This handheld portable module can reveal both 
breathing and heartbeat rhythms in real-time. In the CIELAB 
color coordinate system, the skin color changes caused by 
breathing are mainly indicated by the L* and b* variations, re-
flecting the changes in the relative concentrations of oxygenated 
and deoxygenated hemoglobin species in the skin, whereas the 
heartbeat-induced color changes are indicated by the variations 
in L* and a* coordinates, mainly caused by the BVP in the skin. 
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 The stochastic behavior of the cardiovascular system 
can be described in the state space span by the features of (∆tj) 
and (aj) extracted from the heartbeat-induced color changes. 
Detailed probability distributions of the physiological states were 
retrieved using the GMM, showing different distribution profiles 
in the state space before and after physical exercise. The unique 
features in the probability distributions of three major states (S1, 
S2, and S3) suggest that the cardiovascular system at rest appears 
to reside in the S1 or S2 states for most of the time, occasionally 
transitioning to S3. The distributions were also found to differ 
between young adults with different physical exercise habits. Our 
results show that regular exercise can reduce HR while increas-
ing BVP. Compared with young people, elderly people exhibited 
increased HR with reduced BVP owing to the reduced efficiency 
of their aged cardiovascular system. Our study indicates that the 
portable color sensor can be a useful device for self-health man-
agement.
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