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With the advance of next-generation sequencing (NGS) technologies, more and more medical and biological researches 
adopt NGS technologies to characterize the genetic variations between individuals. The identification of personal genome 
variants using NGS technology is a critical factor for the success of clinical genomics studies. It requires an accurate and con-
sistent analysis procedure to distinguish functional or disease-associated variants from false discoveries due to sequencing er-
rors or misalignments. In this study, we integrate the algorithms for read mapping and variant calling to develop an efficient and 
versatile NGS analysis tool, called MapCaller. It not only maps every short read onto a reference genome, but it also detects 
single nucleotide variants, indels, inversions and translocations at the same time. We evaluate the performance of MapCaller 
with existing variant calling pipelines using three simulated datasets and four real datasets. The result shows that MapCaller 
can identify variants accurately. Moreover, MapCaller runs much faster than existing methods. We demonstrate MapCaller 
is both time and space efficient for NGS data analysis. MapCaller is available at https://github.com/hsinnan75/MapCaller.
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Background

	 With the advance of next-generation sequencing (NGS) 
technologies, it is becoming affordable to support various appli-
cations of precision medicine in the near future [1]. More and 
more medical and biological researches adopt NGS technologies 
to characterize the genetic variations between individuals[2,3]. 
Such genetic variations can be classified into three types: (1) sin-
gle nucleotide variant (SNV, also referred to as SNP); (2) inser-
tion and deletion (indel); and (3) structural variant (SV, includ-
ing translocation, inversion, copy number variation and indels of 
size at least 50 bp).

	 The identification of genome variants is a critical fac-
tor for the success of clinical genomics studies [4]. It requires 
an accurate and consistent analysis procedure to distinguish true 
variants from false discoveries. This procedure often involves 
the steps of short read alignment, alignment rearrangement, 
and variant calling. In each step, one or more tools are applied 
to generate desired output. For example, BWA [5], Bowtie [6,7], 
GEM [8], Subread [9], HISAT/HISAT2 [10], and KART [11] are 
read aligners that can map NGS short reads onto a reference ge-
nome and generate their alignments. SAMtools [12] and Picard 
[13] provide various utilities for manipulating read alignments. 
For variant calling, the Genome Analysis Tool Kit (GATK) [14], 
Freebayes [15], Platypus [16], VarScan [17] and SAMtools are 
widely used. Different combinations of those tools produce var-
ious analysis pipelines. Different variant calling pipelines may 
generate substantial disagreements of variant calls. Several stud-
ies [4, 18] have been conducted to confirm the disagreements 
of variant calling among different pipelines. Besides, all existing 
variant calling pipelines are time and space consuming. They re-
quire read alignments are sorted and stored in desired format.

	 In this study, we present MapCaller, an efficient and 
versatile NGS analysis tool, by integrating the algorithms for 
read mapping and variant calling. For read mapping, we adopt 
a divide-and-conquer strategy to separate a read into regions 
with and without gapped alignment. With this strategy of read 
partitioning, SNVs, indels, and breakpoints can be identified 
efficiently. For variant calling, MapCaller maintains a position 
frequency matrix to keep track of every nucleobase’s occurrence 
at each position of the reference genome while mapping the read 
sequences. Since MapCaller collects all information required 
for variant identification while reads are mapped onto the refer-
ence genome, variants can be called directly in the same process. 
Therefore, the conventional analysis pipeline can be simplified 
greatly. Most existing variant callers can only detect a few specific 

types of variants, however MapCaller can detect multiple types 
of variations, including SNVs, indels, inversions, and trans-
locations. We demonstrate that MapCaller not only produces 
comparable performance on variant calling, but it also spends 
much less time compared to selected variant calling pipelines. 
MapCaller was developed under Linux 64-bit environment and 
implemented with standard C/C++. It takes read files (FASTA/
FASTQ) as input and outputs all predicted variants in VCF for-
mat. The source codes of MapCaller and benchmark datasets are 
available at https://github.com/hsinnan75/MapCaller.

Results and Discussion

Experiment design

	 We develop a simulator to generate genome variations 
using the E.Coli K-12 strain, human chromosome 1, and whole 
human reference genome (GRCh38). The simulator (please re-
fer to Supplementary material S9) randomly generates sequence 
variations with occurrences of 2700 substitutions, 180 small 
indels (1~10 bp), 45 large indels (11~50 bp), 1 translocation 
(TNL, size ranges 1000~2000bp), 1 inversion (INV, size ranges 
1000~2000bp) and 1 copy number variation (CNV, size ranges 
300~1300bp) for every 1,000,000 base pairs. We use WGSIM 
(https://github.com/lh3/wgsim) to generate simulated short read 
sequences for each mutant genome. The simulated read coverage 
is 30X, sequencing error rate is 0.02, and read length is 100bp. 
The synthetic datasets are referred to as Sim_Ecoli, Sim_Chr1, 
and Sim_HG respectively. We also download four real NGS data-
sets from SRA web site, two from sample of HG001-NA12878 
(RUN: SRR6062143 and SRR7781445) and two from sample 
of HG002-NA24385 (RUN: SRR3440404 and SRR6691661), 
where the dataset of SRR3440404 includes short reads from 
RUNs of SRR3440404 to SRR3440422 in order to have enough 
read depth. Note SRR6062143 and SRR7781445 are two sepa-
rate runs of Illumina sequencing data of NA12878. SRR3440404 
and SRR6691661 are also two separate runs of NA24385. GIAB 
(The Genome in a Bottle Consortium) provides high-confidence 
SNP, small indel calls for the two sample genomes. They can be 
found at ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/. Those 
variant calls were made by GATK, Freebayes and Sentieon. Table 
1 shows the number of short reads of each dataset as well as the 
number of each type of variants. It is noteworthy that GIAB does 
not provide structural variant annotation for samples NA12878 
and NA24385.

	 A conventional analysis pipeline includes a read map-
per, SAM/BAM file processing, and a variant caller. In study, 
we compare MapCaller to different combinations of those read 
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mappers and variant callers. For read mapping, we selecte KART, 
BWA-MEM (BWA for short), Bowtie2, and GEM. For the vari-
ant calling, we select GATK HaplotypeCaller (GATK for short), 
Freebayes and SAMtools mpileup (Mpileup for short). For SAM/
BAM file processing, we use SAMtools view/sort to perform file 
format converting and alignment sorting. We also compare the 
performance of structural variant calling with existing methods, 
including DELLY [19], LUMPY [20], and SVDetect [21]. The 
commands as well as the argument setting used for each pipeline 
are shown in Supplementary material (S3). handles the whole 
procedure of analysis pipeline alone. The run time is estimated 
from the read mapping to variant calling. We estimate the pre-
cision and recall for each dataset. We define a true positive case 
(TP) as a true variant call; a false positive case (FP) as a false 
variant call; and a false negative case (FN) as a true variant that 

is not called. A predicted SNV event is considered an TP if its ge-
nomic coordinate is correct without any tolerance, otherwise it is 
a FP. A predicted indel event is considered an TP if the genomic 
coordinate is within 10 bp, otherwise it is a FP.

Performance comparison on synthetic datasets

	 Table 2 summarizes the comparison result on the three 
synthetic datasets. We test every combination of read mapper 
and variant caller. We find that BWA-MEM combined with any 
variant caller generally performs better than any other selected 
read mapper; therefore, we only show the performance of pipe-
lines involved with BWA-MEM here to compare to MapCaller. 
The complete experiment result can be found in Supplementary 
material (S4).

Dataset # of short reads read length SNV indels TNL INV
Sim_Ecoli 1,472,676 100 12,822 1,035 6 3
Sim_Chr1 78,859,696 100 627,576 52,067 261 211
Sim_HG 978,158,892 100 8,003,103 666,213 2,650 2,559
SRR6062143 1,558,904,052 101 3,084,732 534,739 NA NA
SRR7781445 609,362,230 151 3,084,732 534,739 NA NA
SRR3440404 487,042,582 250 3,076,552 519,569 NA NA
SRR6691661 638,722,972 151 3,076,552 519,569 NA NA

Table 1: The benchmark datasets. Sim_Ecoli, Sim_Chr1, and Sim_HG are synthetic data-
sets. SRR6062143 and SRR7781445 are generated from NA12878 (HG001); SRR3440404 and 
SRR6691661 are generated from NA24385 (HG002). TNL: translocation; INV: inversion

Pipeline SNV INDEL Ru n t i m e 
(minutes)Precision Recall Precision Recall

Sim_Ecoli
MapCaller 100 99.3 99.9 98.9 0.1
BWA + Freebayes 99.6 99.5 100 98.7 9.6
BWA + Mpileup 100 99.2 100 98.7 3.5
BWA + GATK 99.3 76.4 100 15.9 66.4
Sim_Chr1
MapCaller 99.9 98.5 99.8 98.0 8.3
BWA + Freebayes 99.3 99.0 99.9 98.3 611.5
BWA + Mpileup 100 98.6 99.9 97.9 277.7
BWA + GATK 99.5 78.4 99.6 17.1 3264.2
Sim_HG
MapCaller 99.2 96.9 99.1 96.3 146.1
BWA + Freebayes 99.2 92.3 99.9 91.6 6954.7
BWA + Mpileup 44.7 91.8 99.9 91.0 3414.1
BWA + GATK 99.4 71.7 99.8 14.9 36812.3

Table 2: The performance comparison on synthetic datasets. GATK producing low recall 
is due to high sequencing error rate (2%) and low sequencing coverage (30X). We investi-
gate the effect of sequencing error rate and coverage in the Supplementary material
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	 It can be observed that MapCaller and Freebayes per-
form comparably on the three synthetic datasets; however, Map-
Caller produces better performance on Sim_HG with respect to 
recalls. The SNV and indel recalls of MapCaller on Sim_HG are 
96.9% and 96.3% respectively. When further analyze some of the 
false negative cases, we find that most of false negatives occur at 
repetitive or highly similar regions. Freebayes and mpileup pro-
duces higher precisions on indel detection on Sim_HG; however, 
they compromise the recalls. The precisions and recalls of Free-
bayes are 99.9% and 91.6%, and those of mpileup are 99.9% and 
91.0%. MapCaller produces balanced result on indel detection. 
Its precision and recall are 99.1% and 96.3% respectively.

	 Surprisingly GATK produces poor recalls on SNV and 
indel detection on all of the three datasets. The recalls on SNV 
detections are all below 80%, and those on indel detection are 
all below 20%. In this experiment, we feed all the three variant 
callers with the same read alignments; however, the fact that 
Freebayes and Mpileup produce much higher recalls on the three 
datasets suggests BWA can process those indel events correctly 
in the alignments. We try to diagnose the reason by configuring 
the pipeline but it did not help. We then increase the read depth 
from 30X to 100X (Sim_Ecoli) and we find both of the recalls 
improve from 76.4% to 95.7% (SNV) and from 15.9% to 65.7% 
(indel). If we further increase the read depth to 200X (Sim_Eco-
li), the two recalls achieve 96.7% and 87.2% respectively. It sug-
gests that GATK performs much better on NGS data with deeper 
coverage. The performance regarding different read depths is 
shown in Supplementary material (S5). We also find that if the 
NGS data is error-free, then the performance of GATK will be 
very good. We simulate an NGS data without any sequencing er-
rors (read depth: 30X, Sim_Ecoli) and test with GATK combined 
with BWA, the precision and recall on SNV detection are 100% 
and 99.4% respectively, and those on indel detection are 99.5% 
and 99.0% respectively. It implies that GATK is more sensitive to 
sequencing errors.

	 Another noteworthy observation is that Mpileup per-
forms much worse on Sim_HG. The precision on SNV detection 
is only 44.7%. When we further analyze the output, we find that 
Mpileup generates many false positive SNVs at loci with very 
shallow depth. Fortunately, we can filter out some of the false 
calls according to their confidence scores.

	 In terms of run time, it can be observed that MapCaller 
is much more efficient than the selected pipelines. For example, 
MapCaller only spends 148 minutes to handle Sim_HG. Howev-
er, the other three pipelines spend 3414, 6954, and 36812 minutes 

respectively on the dataset. Since the variant analysis pipeline 
consists of multiple steps, we can further decompose the run-
time into multiple parts. Take the pipeline of BWA+GATK for 
example, it spends 1444 minutes for read mapping, 249 minutes 
for SAM/BAM file processing, and then another 35119 minutes 
for variant calling. If we only consider the run time for variant 
calling, MapCaller only spends 2.6 minutes (155 seconds). Map-
Caller is much more efficient because it not only adopts a very 
efficient read mapping algorithm, but it also saves run time by 
skipping processing SAM/BAM files and collects variant infor-
mation directly during read mapping.

Performance comparison on real datasets

	 We download four real NGS datasets sequenced for ge-
nomes of NA12878 (HG001) and NA24385 (HG002). However, 
the two genomes do not have ground truth variant annotation. 
GIAB provides reference calls that were made by GATK, Free-
bayes and Sentieon for the sample genomes. In this study, we use 
the reference calls as the gold standard to estimate the perfor-
mance of each method. We download two separate datasets from 
each sample genome because we would like to demonstrate vari-
ant callers produce difference results on different data sets even 
if the sample genome is the same.

	 Table 3 summarizes the comparison result. It can be ob-
served that MapCaller, Freebayes and GATK perform compara-
bly. It is not obvious that which method performs the best. Each 
method has their strength and weakness. For example, MapCall-
er and GATK generally produce higher precisions on SNV de-
tections than the other two methods. Freebayes and GATK gen-
erally produced higher recalls on indel detections. However, it 
seems like Mpileup produces relatively lower precisions on SNV 
detection and lower recalls on indel detection. Mpileup still gen-
erates many false positive cases on SNV detection. Its precisions 
are all below 20%. We also find that some of false calls made by 
MapCaller are due to ambiguous alignments of indels. If we re-
lax the tolerance of locus difference for indel events to 50bp, the 
precisions and recalls of MapCaller on indel detection will be 
increased by around 10% and 4% respectively.

	 Moreover, some of false negative cases are due to poor 
alignment quality and their read alignments are discarded by 
MapCaller. For example, the reference calls report three adja-
cent variants, which are chr1:20761541 (an insertion: AGAG), 
chr1:20761544 (SNV: C), and chr1:20761545 (a deletion: AT). 
Since there are more than three state transitions in the correspond-
ing alignment, MapCaller generate the corresponding alignments 
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and then they are considered poor alignment and discarded. If 
the adjacent variants appear in two separated alignments, they 
still can be called by MapCaller. It is estimated NA12878 contains 
11,018 indel events (2.1%) that are adjacent to one another within 
five nucleotides, and NA24385 contains 10,016 variants (2.0%). 
By contrast, MapCaller produces around 0.7% of indels that are 
adjacent within five nucleotides in average.

	 Since the reference calls were made by integrating three 
different callers, we analyze the performance of overlapping calls 
by integrating MapCaller, Freebayes, Mpileup and GATK on the 
dataset of SRR6062143. If an SNV is called by all the four meth-
ods, the precision is 83.6%. If an indel is called by all the four 
methods, the precision was 79.2%. It suggests that the overlaps 
of variant calls can increase calling accuracy significantly. More-
over, we also find the union of the four callers can cover 99.9% of 
reference SNVs and 98.6% of reference indels. The performance 
with respective to overlaps among the four callers for each data-
set is shown in Supplementary material (S6).

	 In terms of run time, MapCaller is still much fast-
er than any other pipeline. It is around 100 times faster than 
BWA+GATK. It spends around one or two hours to handle a 

human genome data with around 30X of read depth. If we only 
consider the run time for variant calling, MapCaller is much fast-
er than GATK. For example, MapCaller spends three minutes 
on variant calling for SRR6062143, while GATK spends 203.8 
hours for the same dataset. Though MapCaller runs very fast, it 
produces comparable result as Freebayes and GATK do in this 
analysis. Thus, we demonstrate MapCaller is a highly efficient 
variant calling method.

Performance comparison on structural variant de-
tection

	 MapCaller is capable of identifying structural variants 
(referred to as SVs in the following description) simultaneously. 
We do not identify CNVs in this study. CNV calling will be in-
cluded in MapCaller in the future version. Table 4 shows the per-
formance comparison on SV detection for MapCaller and other 
selected callers. We estimate the precision and recall of each call-
er. It can be observed that MapCaller produces high precisions 
and recalls on all the three simulated datasets. In particularly, 
MapCaller produces the highest precisions among these callers. 
LUMPY produces high precisions and recalls on inversion detec-
tions. However, it produces relatively lower precisions and recalls 

Pipeline SNV INDEL Ru n t i m e 
(hours)Precision Recall Precision Recall

SRR6062143
MapCaller 76.2 98.8 66.4 89.2 2.0
BWA + Freebayes 70.8 96.2 61.3 91.8 122.7
BWA + Mpileup 22.3 97.4 70.1 73.5 70.2
BWA + GATK 77.1 97.3 67.1 95.5 203.8
SRR7781445
MapCaller 78.6 97.3 66.2 88.3 1.5
BWA + Freebayes 72.1 96.1 58.3 95.0 122.3
BWA + Mpileup 17.8 97.4 68.0 71.4 71.8
BWA + GATK 77.3 97.2 63.9 96.0 161.8
SRR3440404
MapCaller 76.4 98.3 66.0 89.8 2.0
BWA + Freebayes 67.3 95.8 60.1 95.5 116.4
BWA + Mpileup 8.5 99.7 66.8 73.1 60.9
BWA + GATK 77.1 99.7 68.7 95.7 227.9
SRR6691661
MapCaller 77.5 97.9 60.7 91.3 1.5
BWA + Freebayes 70.4 95.8 58.1 94.8 96.5
BWA + Mpileup 16.8 99.4 66.6 76.2 49.7
BWA + GATK 78.2 99.8 63.2 99.0 157.1

Table 3: The performance comparison on real datasets.
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on translocation detections. SVDetect loses precisions on trans-
location and inversion detection, but it generates much higher 
recalls on the two types of structural variants. Similar to LUMPY, 
DELLY generally produces high precisions and recalls on inver-
sion detections, but it cannot detect any translocation events on 
the three datasets. In summary, MapCaller is the only method 
that handles both translocation and inversion detection at high 
precision and recall.

Variant filtering

	 We estimate the performance of MapCaller and each 
selected pipeline using the raw result. However, most variant 
callers provide specific filters to remove unlikely variants based 
on their algorithm design and statistic models; it may compli-
cate the comparison if we try to optimize the filtering strategy 
for each caller. According to the performance comparison result 

Data set Method   Translocation Inversion
Precision Recall Precision Recall

Sim_Ecoli MapCaller 100 100 100 100
LUMPY 100 66.7 100 100
SVDetect 100 100 100 100
DELLY NA NA 100 100

Sim_Chr1 MapCaller 100 94.3 100 87.7
LUMPY 84.2 33.3 99.5 92.9
SVDetect 27.2 97.7 64.8 93.8
DELLY NA NA 96.9 95.7

Sim_HG MapCaller 99.9 94.8 100 87.8
LUMPY 87.9 35.3 100 93.7
SVDetect 28.9 95.4 62.3 93.1
DELLY NA NA 99.1 95.2

Table 4: The performance comparison on real datasets.

using synthetic datasets, we find that MapCaller and the other 
selected methods produce high precisions on SNV and indel de-
tection, except Mpileup loses its SNV accuracy on the dataset of 
Sim_HG. It suggests that MapCaller, Freebayes and GATK can 
produce reliable variant calls without any specific filters. How-
ever, Mpileup tends to produce more SNV calls. It is necessary 
to filter out false calls to improve the accuracy. Since all variant 
callers give an estimate on how likely a variant call is true with a 
quality score (the QUAL column), we analyze the SNV accura-
cy regarding Mpileup on Sim_HG, SRR6062143, SRR7781445, 
SRR3440404 and SRR6691661 to investigate the relationship be-
tween precision/recall and QUAL values. The analysis result is 
shown in Supplementary material (S7).

Comparison of data storage to existing methods

	 All current variant calling pipelines require SAM/BAM 
files as inputs and take multiple steps to rearrange the alignments 
for variant calling. It is not only time consuming, but also re-
quires a huge amount of disk space. MapCaller identifies variants 
directly from the NGS short reads. Thus, it is not necessary to 
output SAM/BAM files and it saves a lot of disk space. Pipelines 
involved with GATK require even more disk space for the ad-

ditional preprocess of alignments. We compare the data storage 
space of each pipeline in the Supplementary material (S8).

Conclusion

	 In this manuscript, we present MapCaller, an integrated 
system for read mapping and variant calling. MapCaller collects 
read alignment information during read mapping and maintains 
a position frequency matrix to keep track of alignments at each 
position of the reference genome. We evaluate the performance 
of MapCaller and the selected variant calling pipelines using 
three synthetic datasets and four real data sets from human ge-
nomes. The comparison results show that MapCaller not only 
identifies highly accurate variants, but it also spends the least 
amount of time. MapCaller is also versatile. It is capable of iden-
tifying SNVs, INDELs, and structural variants simultaneously.

	 Since more and more medical and biological research-
es adopt NGS technologies to characterize the genetic variations 
between individuals, we believe MapCaller is able to provide ac-
curate and reliable variant calls much faster than existing meth-
ods.
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Methods

	 MapCaller aligns every short read onto a reference ge-
nome and collects the alignment information during read map-
ping to identify sequence variants. MapCaller uses a modified 
algorithm of KART to perform read mapping. It maintains a 
position frequency matrix to keep track of every nucleobase’s 
frequency at each position in the reference genome and col-
lects all insertion and deletion events that are found during read 
mapping. Furthermore, It gathers all possible breakpoints from 
discordant or partial read alignments. Finally, MapCaller finds 
sequence variants based on all of the above-mentioned informa-
tion. The novelty of our algorithm derives from the integration of 
read mapping and variation information gathering into a coher-
ent system for variant calling.

Read mapping and alignment profiles

	 The details of read mapping method, KART can be 
found in our previous study 11. Here we focus on the high-level 
methodology description. KART adopts a divide-and-conquer 
strategy to handle matches and mismatches separately between 
read sequence and reference genome. KART identifies all locally 
maximal exact matches (LMEMs). We then cluster them accord-
ing to their coordinates and fill gaps between LMEMs to create fi-
nal alignments. KART divides a read alignment into two groups: 
simple region pairs (abbreviated as simple pairs) and normal re-
gion pairs (normal pairs), where all simple pairs are LMEMs and 
normal pairs are gaps between simple pairs and might require 
gapped alignment (due to mismatches or indels).

	 Given a read sequence R, the reference genome G, Let 
Ri be the i-th residue of R and R[i1, i2] be the substring between 
Ri1 and Ri2. Likewise, let Gj be the j-th nucleotide of G and G[j1, 
j2] be the substring between Gj1 and Gj2. A simple pair (or a 
normal pair) consists of a read’s substring and its counterpart of 
reference’s substring. They can be represented as (R[i1, i2], G[j1, 
j2]). One or more simple/normal pair forms a candidate align-
ment. We perform pairwise alignment for each normal pair in a 
candidate alignment.

	 We check the alignment quality of a normal pair at ei-
ther end of the read sequence to determine whether they should 
be discarded. The quality evaluation is as follows. Given an align-
ment of a normal pair at either end, MapCaller counts the num-
ber of mismatches and state transitions of the alignment. A state 
transition is an alignment state change of base alignment, inser-
tion and deletion. If there are more than three state transitions 
or the number of mismatches is more than a threshold in the 
normal pair, it will be discarded from the candidate alignment. 
Such normal pair may appear due to false mapping or structur-
al variants. MapCaller infers breakpoints based on such normal 
pairs.

	 Fig. 1 illustrates two cases of read alignments that re-
veal a translocation event and an inversion event respectively. 
In Fig. 1(A), paired-end reads Read1 and Read2 are mapped far 
away from each other due to a translocation event in the sample 
genome. The two alignments are considered discordant. Read1 
and Read2 are clipped a few bases since they cover a breakpoint. 
Likewise, in Fig. 1(B), paired-end reads Read3 and Read4 are 

Figure 1: (A) Paired-end Read1 and Read2 are mapped distantly due to a translocation event in the sample genome. 
(B) Paired-end Read3 and Read4 are mapped with same orientation due to an inversion event in the sample genome
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mapped with same orientation due to an inversion event in the 
sample genome. The two alignments are also considered discor-
dant. MapCaller infers breakpoints both from the clipped and 
discordant alignments. On the other hand, if two normal pairs 
at both ends are removed after quality evaluation, then we will 
discard the whole candidate alignment since it is very likely the 
candidate alignment is a false alignment. Finally, each candidate 
alignment is evaluated by their numbers of exact matches and 
mismatches. For each short read, we only keep the alignment 
with the highest alignment score.

	 MapCaller creates a position frequency matrix (PFM) 
to count the nucleobase occurrences at each position. PFM is a 
matrix of 4 × L, where L is the reference genome size. Therefore, 
each column of PFM represents the occurrences of nucleobas-
es A, C, G, and T at that position of the reference genome. Map-
Caller updates the occurrence at each column according to read 
alignments. Fig. 2 shows an example to illustrate how PFM works 
in this study. Five reads are mapped onto the reference genome. 
MapCaller counts the frequencies of each involved column. For 
example, PFM[3] = (1, 0, 0, 4) indicates there are one ‘A’ and four 
‘T’s aligned at the third position of the reference genome. Any 
insertion and deletion events are kept otherwise. PFM can be 
further extended by increasing the column size if we would like 
to keep more mapping information.

	 We use a 3-tuple, Ins(Gpos, R[i,j], k) and Del(Gpos, 
G[m,n], k) to represent an insertion and deletion event, where 
Gpos indicates the occurrence location, R[i,j] and G[m,n] are 
the indel strings, and k is the number of occurrences. MapCaller 
would create the following three 3-tuples: Ins(3, T, 1), Del(5, C, 

1), and Del(8, CG, 1) based on the example cases in Fig 2. We 
describe how the SNVs, indels, inversions, and translocations are 
identified based on the PFM and by MapCaller below. It is note-
worthy that the quality measurement of each type of variant is 
described in the Supplementary (S1).

SNV detection

	 MapCaller uses PFM to keep track of the occurrences of 
the four nucleobases at each position in the reference genome. 	
The depth of position p, denoted as Depth(p), where Depth(p) = 
PFM[p, A]+ PFM[p, C]+ PFM[p, G] + PFM[p, T]. We partition 
the reference genome sequence into blocks of 100 nucleobases. 
For each block i, MapCaller determines a threshold, denoted as 
depthr(i), which is the half of the average depth for all the nucleo-
bases within the block.

	 A nucleobase at position p is considered an alternative 
allele if its occurrence is above OccurrenceThr(p)= Depth(p) × 
MinAlleleFrequency, where MinAlleleFrequency is a user defined 
threshold. Thus, a nucleobase b at position p is considered an 
SNV if the following two conditions are satisfied: (1) Depth(p) 
≥ depthr(i); (2) PFM[p, b] ≥ OccurrenceThr(p). Since the sample 
genome may carry multiple sets of chromosomes, the genotype 
at the same position can be homozygous or heterozygous. Map-
Caller considers both haploid and diploid scenarios. If only one 
nucleobase is called and its frequency is less than 1- MinAllele-
Frequency, then the locus is considered heterozygous, otherwise 
it is homozygous.

Figure 2: An example of position frequency matrix (PFM). Five read alignments are used to count the frequency 
of A, C, G and T at each position. Nucleobases in red are sequencing errors, and those in blue are SNPs

pos
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Indel detection

	 MapCaller keeps track of all indel events using the 3-tu-
ples, thus indel events can be deduced from those 3-tuples. We 
use InsOccurrence(p) and DelOccurrence(p) to represent the oc-
currences of insertion and deletion events at position p. Howev-
er, the alignments involved with indels could be ambiguous. For 
example, the two following alignments produce identical align-
ment scores: 

AGCATGCATTG	                    AGCATGCATTG

AGCAT----TG	   and	 AG----CATTG

It can be observed that the two alignments will lead to different 
indel events, which are GCAT and CATG at neighboring posi-
tions. To avoid the ambiguity, MapCaller finds the indel with the 
maximal occurrences within the range of (p -5, p + 5). MapCall-
er also counts the total occurrences of insertions and deletions 
(denoted as InsOccurrence(p) and DelOccurrence(p)) within the 
range. MapCaller reports an insertion event at position p only 

if InsOccurrence(p) ≥ depthr(i) × 0.25. Likewise, it reports a de-
letion event at position p only if DelOccurrence(p) ≥ depthr(i) 
× 0.35. Since depthr(i) is normally lower than the neighboring 
depths when there are deletion events, we use 0.35 to determine 
the threshold for deletion detection.

Translocation and inversion detection

	 MapCaller estimates the average distance 
and fragment size of the paired-end reads periodically during 
read mapping. They are denoted as AvgDist and AvgFragmen-
tSize. The definition of the distance and fragment size is de-
scribed in Supplementary material (S2). We use AvgDist to 
distinguish concordant pairs from discordant pairs. In Illumi-
na sequencing protocol, two paired-end reads are supposed to 
be mapped to different orientations of the same chromosome 
within an expected distance. Concordant pairs match paired-
end expectations, whereas discordant pairs do not. Figure. 3(A) 
shows examples of regular paired-end reads that are mapped 

Figure 3: (A) Concordant pairs (B) discordant pairs −translocation (C) discordant pairs − inversion
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concordantly since the sample genome do not have any struc-
tural variants at the corresponding region. Figure. 3(B) shows a 
translocation event. The green dotted- rectangle is translocat-
ed from Breakpoint2 to Breakpoint1. Thus, the corresponding 
paired-end reads will be mapped discordantly. Likewise, Figure 
3(C) shows an example of an inversion event at BreakPoint3. 
The light-blue dotted-rectangle is the reversal of itself. There-
fore, the corresponding paired-end reads will be mapped to the 
same orientation.

	 MapCaller collects all discordant pairs 
and classifies them into translocation and inversion candidate 
groups. If paired-end reads are mapped to different orientation 
and their distance is greater than (AvgDist × 1.5), they are put 
into translocation group, denoted as TnlGroup. If paired-end 
reads are mapped to the same orientation, they are put into in-
version group, denoted as InvGroup. Since MapCaller collects 
all breakpoints from read alignments with a single-end clip-
ping, we set a window to identify breakpoints as follows. For 
each breakpoint p, we set a screening region of AvgFragmentSize 
width at both sides of p. To identify breakpoints of transloca-
tion events, we count the number of reads in TnlGroup that are 
mapped at the screening region. The number of reads at left 
side is denoted as LRnum(p) and the right side is denoted as 
RRnum(p). We measure the average read depth at both sides, 
denoted as Ldepth(p) and Rdepth(p). If p is a true breakpoint 
for a translocation event, we should be able to observe a certain 
number of discordant read alignments in the TnlGroup that are 
separated by the breakpoint. Thus, we decide p is a breakpoint if 
the following conditions are satisfied: (1) LRnum(p) ≥ depthr(i); 
(2) LRnum(p) ≥ Ldepth(p) × 0.5; (3) RRnum(p) ≥ depthr(i); and 
(4) RRnum(p) ≥ Rdepth(p) × 0.5. To identify breakpoints of in-
version events, we adopt similar process to verify the positivity 
of every breakpoint by checking the discordant pairs in the In-
vGroup.

Data Availability

	 MapCaller was developed under Linux 
64-bit environment and implemented with standard C/C++. 
It takes read files (FASTA/FASTQ) as input and outputs all pre-
dicted variants in VCF format. The source codes of MapCaller 
and benchmark datasets are available at https://github.com/
hsinnan75/MapCaller.
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